980 research outputs found

    Minimal models for topological Weyl semimetals

    Get PDF
    Topological Weyl semimetals (TWS) can be classified as type-I TWS, in which the density of states vanishes at the Weyl nodes, and type-II TWS where an electron and a hole pocket meet with finite density of states at the nodal energy. The dispersions of type-II Weyl nodes are tilted and break Lorentz invariance, allowing for physical properties distinct from those in a type-I TWS. We present minimal lattice models for both time-reversal-breaking and inversion-breaking type-II Weyl semimetals, and investigate their bulk properties and topological surface states. These lattice models capture the extended Fermi pockets and the connectivities of Fermi arcs. In addition to the Fermi arcs, which are topologically protected, we identify surface "track states" that arise out of the topological Fermi arc states at the transition from type-I to type-II with multiple Weyl nodes, and persist in the type-II TWS.Comment: 13 pages, 9 figure

    Inhomogeneous metallic phase upon disordering a two dimensional Mott insulator

    Full text link
    We find that isoelectronic disorder destroys the spectral gap in a Mott-Hubbard insulator in 2D leading, most unexpectedly, to a new metallic phase. This phase is spatially inhomogeneous with metallic behavior coexisting with antiferromagnetic long range order. Even though the Mott gap in the pure system is much larger than antiferromagnetic exchange, the spectral gap is destroyed locally in regions where the disorder potential is high enough to overcome the inter-electron repulsion thereby generating puddles where charge fluctuations are enhanced. With increasing disorder, these puddles expand and concomitantly the states at the Fermi energy get extended leading to a metallic phase. We discuss the implications of our results for experiments.Comment: (4 pages, 5 figures
    • …
    corecore