899 research outputs found

    Realization of three-dimensional walking of a cheetah-modeled bio-inspired quadruped robot

    Get PDF
    Adaptability of quadruped animals is not solely reached by brain control, but by the interaction between its body, environment, and control. Especially, morphology of the body is supposed to contribute largely to the adaptability. We have tried to understand quadrupedal locomotion by building a bio-inspired quadruped robot named ”Pneupard”, which has a feline-like muscular-skeletal structure. In our previous study, we successfully realized alternative gait of hindlimbs by reflex control based on the sole touch information, which is called an unloading rule, and that of forelimbs as well. In this paper, we finally connect forelimbs and hindlimbs by a rigid spine, and conduct 3D walking experiments only with the simple unloading rule. Through several preliminary experiments, we realize that the touch information on the sole is the most critical for stable 3D walking.This work was partially supported by Grant-in-Aid for Scientific Research on 23220004, 25540117 of Japan.This is the accepted manuscript. The final version is available at http://dx.doi.org/10.1109/ROBIO.2014.7090426

    Lifelogging for Hidden Minds: Interacting Unconsciously

    Full text link

    Thermodynamic limit of random partitions and dispersionless Toda hierarchy

    Full text link
    We study the thermodynamic limit of random partition models for the instanton sum of 4D and 5D supersymmetric U(1) gauge theories deformed by some physical observables. The physical observables correspond to external potentials in the statistical model. The partition function is reformulated in terms of the density function of Maya diagrams. The thermodynamic limit is governed by a limit shape of Young diagrams associated with dominant terms in the partition function. The limit shape is characterized by a variational problem, which is further converted to a scalar-valued Riemann-Hilbert problem. This Riemann-Hilbert problem is solved with the aid of a complex curve, which may be thought of as the Seiberg-Witten curve of the deformed U(1) gauge theory. This solution of the Riemann-Hilbert problem is identified with a special solution of the dispersionless Toda hierarchy that satisfies a pair of generalized string equations. The generalized string equations for the 5D gauge theory are shown to be related to hidden symmetries of the statistical model. The prepotential and the Seiberg-Witten differential are also considered.Comment: latex2e using amsmath,amssymb,amsthm packages, 55 pages, no figure; (v2) typos correcte

    Exact S-Matrices for Bound States of a2(1)a_2^{(1)} Affine Toda Solitons

    Full text link
    Using Hollowood's conjecture for the S-matrix for elementary solitons in complex an(1)a_n^{(1)} affine Toda field theories we examine the interactions of bound states of solitons in a2(1)a_2^{(1)} theory. The elementary solitons can form two different kinds of bound states: scalar bound states (the so-called breathers), and excited solitons, which are bound states with non-zero topological charge. We give explicit expressions of all S-matrix elements involving the scattering of breathers and excited solitons and examine their pole structure in detail. It is shown how the poles can be explained in terms of on-shell diagrams, several of which involve a generalized Coleman-Thun mechanism.Comment: Comments to figure 1 changed, some misprints corrected, 31 pages, LATEX. (Version accepted for publication in NUCLEAR PHYSICS B

    Factorization of Seiberg-Witten Curves and Compactification to Three Dimensions

    Full text link
    We continue our study of nonperturbative superpotentials of four-dimensional N=2 supersymmetric gauge theories with gauge group U(N) on R^3 x S^1, broken to N=1 due to a classical superpotential. In a previous paper, hep-th/0304061, we discussed how the low-energy quantum superpotential can be obtained by substituting the Lax matrix of the underlying integrable system directly into the classical superpotential. In this paper we prove algebraically that this recipe yields the correct factorization of the Seiberg-Witten curves, which is an important check of the conjecture. We will also give an independent proof using the algebraic-geometrical interpretation of the underlying integrable system.Comment: laTeX, 14 pages, uses AMSmat

    Melting Crystal, Quantum Torus and Toda Hierarchy

    Full text link
    Searching for the integrable structures of supersymmetric gauge theories and topological strings, we study melting crystal, which is known as random plane partition, from the viewpoint of integrable systems. We show that a series of partition functions of melting crystals gives rise to a tau function of the one-dimensional Toda hierarchy, where the models are defined by adding suitable potentials, endowed with a series of coupling constants, to the standard statistical weight. These potentials can be converted to a commutative sub-algebra of quantum torus Lie algebra. This perspective reveals a remarkable connection between random plane partition and quantum torus Lie algebra, and substantially enables to prove the statement. Based on the result, we briefly argue the integrable structures of five-dimensional N=1\mathcal{N}=1 supersymmetric gauge theories and AA-model topological strings. The aforementioned potentials correspond to gauge theory observables analogous to the Wilson loops, and thereby the partition functions are translated in the gauge theory to generating functions of their correlators. In topological strings, we particularly comment on a possibility of topology change caused by condensation of these observables, giving a simple example.Comment: Final version to be published in Commun. Math. Phys. . A new section is added and devoted to Conclusion and discussion, where, in particular, a possible relation with the generating function of the absolute Gromov-Witten invariants on CP^1 is commented. Two references are added. Typos are corrected. 32 pages. 4 figure

    Supersymmetry Flows, Semi-Symmetric Space Sine-Gordon Models And The Pohlmeyer Reduction

    Full text link
    We study the extended supersymmetric integrable hierarchy underlying the Pohlmeyer reduction of superstring sigma models on semi-symmetric superspaces F/G. This integrable hierarchy is constructed by coupling two copies of the homogeneous integrable hierarchy associated to the loop Lie superalgebra extension f of the Lie superalgebra f of F and this is done by means of the algebraic dressing technique and a Riemann-Hilbert factorization problem. By using the Drinfeld-Sokolov procedure we construct explicitly, a set of 2D spin \pm1/2 conserved supercharges generating supersymmetry flows in the phase space of the reduced model. We introduce the bi-Hamiltonian structure of the extended homogeneous hierarchy and show that the two brackets are of the Kostant-Kirillov type on the co-adjoint orbits defined by the light-cone Lax operators L_\pm. By using the second symplectic structure, we show that these supersymmetries are Hamiltonian flows, we compute part of the supercharge algebra and find the supersymmetric field variations they induce. We also show that this second Poisson structure coincides with the canonical Lorentz-Invariant symplectic structure of the WZNW model involved in the Lagrangian formulation of the extended integrable hierarchy, namely, the semi-symmetric space sine-Gordon model (SSSSG), which is the Pohlmeyer reduced action functional for the transverse degrees of freedom of superstring sigma models on the cosets F/G. We work out in some detail the Pohlmeyer reduction of the AdS_2xS^2 and the AdS_3xS^3 superstrings and show that the new conserved supercharges can be related to the supercharges extracted from 2D superspace. In particular, for the AdS_2xS^2 example, they are formally the same.Comment: V2: Two references added, V3: Modifications in section 2.6, V4: Published versio
    corecore