3,282 research outputs found

    Current-perpendicular-to-plane giant magnetoresistance of a spin valve using Co2MnSi Heusler alloy electrodes

    Full text link
    We report the current-perpendicular-to-plane giant magnetoresistance of a spin valve with Co2MnSi (CMS) Heusler alloy ferromagnetic electrodes. A multilayer stack of Cr/Ag/Cr/CMS/Cu/CMS/Fe25Co75/Ir28Mn72/Ru was deposited on a MgO (001) single crystal substrate. The bottom CMS layer was epitaxially grown on the Cr/Ag/Cr buffer layers and was ordered to the L21 structure after annealing at 673 K. The upper CMS layer was found to grow epitaxially on the Cu spacer layer despite the large lattice mismatch between Cu and CMS. The highest MR ratios of 8.6% and 30.7% for CPP-GMR were recorded at room temperature and 6 K, respectively. The high spin polarization of the epitaxial CMS layers is the most likely origin of the high MR ratio.Comment: 14 pages, 3 figures, presented at the 53rd Annual Conference on Magnetism and Magnetic Materials, to be published in J. Appl. Phy

    Life-cycle assessment of domestic and transboundary recycling of post-consumer PET bottles

    Get PDF
    Abstract Background, aim, and scope In recent years, besides being recycled domestically, a part of Japanese post-consumer polyethylene terephthalate (PET) bottles have been exported to and recycled in mainland China. In this study, life-cycle assessment (LCA) was applied to compare domestic and transboundary recycling scenarios between Japan and China and disposal scenarios from the viewpoints of greenhouse gases (GHG) emission and fossil resource consumption. Methods The following 10 scenarios based on our field surveys were evaluated: Japanese post-consumer PET bottles are (i) recycled into polyester staple in Japan, (ii) recycled into polyester filaments in Japan, (iii) recycled into polyester clothes in Japan, (iv) chemically decomposed and recycled into bottle-grade PET resin in Japan, (v) chemically decomposed and recycled into polyester filaments in Japan, (vi)-(vii) recycled into polyester staple via two different flows in China, (viii) recycled into polyester clothes in China, (ix) incinerated and partly recovered as electricity in Japan, and (x) directly landfilled in Japan. In all the evaluated scenarios, the functional unit is the recycling or disposal of 1 kg of Japanese post-consumer PET bottles. The system boundaries range from waste collection by municipalities to the manufacture of recycled products that can be regarded as substitutes for virgin products, and a credit for the avoided production of equivalent virgin products is given to each scenario. The inventories of both foreground and background processes in Japan were quoted from published reports and databases. The actual conditions of PET bottle recycling that were obtained through field surveys in China were reflected to some inventories of foreground processes in China. The inventories of public electricity supplies in China were based on the national statistics, and the inventories of petroleum products, industrial water supply, and waste treatment are based on our field surveys in China. Other unknown inventories in China were substituted by corresponding inventories in Japan. Results and discussion The results showed that all the domestic and transboundary recycling scenarios had smaller GHG emissions and fossil resource consumptions than the incineration scenario and that the chemical recycling scenarios had larger GHG emissions and fossil resource consumptions than the other recycling scenarios. The landfilling scenario had the largest fossil resource consumption, while it was better than the incineration scenario and slightly better than the chemical recycling scenarios from the viewpoint of GHG emission. The robustness of the results was examined, and it was found that the differences in GHG emission and fossil resource consumption between the domestic and transboundary recycling scenarios, other than the scenarios including cloth-manufacturing processes in system boundaries, were sufficiently large to be robust against the variability of background parameters for electricity supplies. As for the Responsible editor: Shabbir Gheewala Electronic supplementary material The online version of this articl

    TableHop: an actuated fabric display using transparent electrodes

    Get PDF
    We present TableHop, a tabletop display that provides controlled self-actuated deformation and vibro-tactile feedback to an elastic fabric surface while retaining the ability for high-resolution visual projection. The TableHop surface is made of a highly stretchable pure spandex fabric that is electrostatically actuated using electrodes mounted on its underside. We use transparent indium tin oxide electrodes and high-voltage modulation to create controlled surface deformations. This setup actuates pixels and creates deformations in the fabric up to ±\pm 5mm. Since the electrodes are transparent, the fabric surface can function as a diffuser for rear-projected visual images, and avoid occlusion by users. Users can touch and interact with the fabric to create expressive interactions as with any fabric based shape-changing interface. By using frequency modulation in the high-voltage circuit, we can also create localised tactile sensations on the user's finger-tip when touching the surface. We provide detailed simulation results of the shape of the surface deformation and the frequency of the haptic vibrations. These results can be used to build prototypes of different sizes and form-factors. We finally create a working prototype of TableHop that has 30×\times40 cm surface area and uses a grid of 3×\times3 transparent electrodes. Our prototype uses a maximum of 2.2 mW and can create tactile vibrations of up to 20 HzHz. TableHop can be scaled to large interactive surfaces and integrated with other objects and devices. TableHop will improve user interaction experience on 2.5D deformable displays
    • 

    corecore