5 research outputs found

    A Screening Pipeline for Antiparasitic Agents Targeting Cryptosporidium Inosine Monophosphate Dehydrogenase

    Get PDF
    Persistent diarrhea is a leading cause of illness and death among impoverished children, and a growing share of this disease burden can be attributed to the parasite Cryptosporidium. There are no vaccines to prevent Cryptosporidium infection, and the treatment options are limited and unreliable. Critically, no effective treatment exists for children or adults suffering from AIDS. Cryptosporidium presents many technical obstacles for drug discovery; perhaps the most important roadblock is the difficulty of monitoring drug action. Here we have developed a set of methods to accelerate the drug discovery process for cryptosporidiosis. We exploit the opportunities for experimental manipulation in the related parasite Toxoplasma to genetically engineer a Cryptosporidium model. This new model parasite mirrors the metabolism of Cryptosporidium for a particularly promising drug target that supplies the building blocks for DNA and RNA. Drug effectiveness can be assayed through simple fluorescence measurements for many candidates. Using this assay as an initial filter, and adapting other assays to a high throughput format, we identify several novel chemical compounds that exhibit markedly improved anti-cryptosporidial activity and excellent selectivity

    Quantification of Cryptosporidium parvum in anaerobic digesters treating manure by (reverse-transcription) quantitative real-time PCR, infectivity and excystation tests

    No full text
    The survival of Cryptosporidium parvum oocysts in anaerobic digesters treating manure was investigated for mesophilic, thermophilic, and a combined treatment (mesophilic-thermophilic-mesophilic) under different retention times of oocysts in the reactors. C. parvum DNA was extracted with an optimised protocol, and its amount determined by quantitative real-time PCR (qPCR). Results indicated noteworthy differences in DNA content after the different treatments. DNA was not degraded during the process. However, excystation and infectivity tests showed a reduction of viable oocyst numbers of ≥2 and ≥5 log units after the thermophilic treatment in two different experiments. Thus qPCR-targeting DNA can overestimate the number of oocysts that survive and remain viable after anaerobic digestion. However, targeting DNA is suitable to indicate the presence or absence of oocysts. Reverse transcription qPCR (RT-qPCR) targeting C. parvum hsp70 mRNA successfully indicated the presence of viable fraction of oocysts
    corecore