10 research outputs found

    Precise Analysis of Polymer Rotational Dynamics

    Get PDF
    Through the analysis of individual chain dynamics alongside the corresponding molecular structures under shear via nonequilibrium molecular dynamics simulations of C178H358 linear and short-chain branched polyethylene melts under shear flow, we observed that the conventional method based on the chain end-to-end vector (and/or the gyration tensor of chain) is susceptible to quantitatively inaccurate measurements and often misleading information in describing the rotational dynamics of polymers. Identifying the flaw as attributed to strong irregular Brownian fluctuations inherent to the chain ends associated with their large free volume and strong molecular collisions, we propose a simple, robust way based on the chain center-to-center vector connecting the two centers of mass of the bisected chain, which is shown to adequately describe polymer rotational dynamics without such shortcomings. We present further consideration that the proposed method can be useful in accurately measuring the overall chain structure and dynamics of polymeric materials with various molecular architectures, including branched and ring polymers.open

    Molecular dynamics for linear polymer melts in bulk and confined systems under shear flow

    Get PDF
    In this work, we analyzed the individual chain dynamics for linear polymer melts under shear flow for bulk and confined systems using atomistic nonequilibrium molecular dynamics simulations of unentangled (C50H102) and slightly entangled (C178H358) polyethylene melts. While a certain similarity appears for the bulk and confined systems for the dynamic mechanisms of polymer chains in response to the imposed flow field, the interfacial chain dynamics near the boundary solid walls in the confined system are significantly different from the corresponding bulk chain dynamics. Detailed molecular-level analysis of the individual chain motions in a wide range of flow strengths are carried out to characterize the intrinsic molecular mechanisms of the bulk and interfacial chains in three flow regimes (weak, intermediate, and strong). These mechanisms essentially underlie various macroscopic structural and rheological properties of polymer systems, such as the mean-square chain end-to-end distance, probability distribution of the chain end-to-end distance, viscosity, and the first normal stress coefficient. Further analysis based on the mesoscopic Brightness method provides additional structural information about the polymer chains in association with their molecular mechanisms
    corecore