962 research outputs found

    Modified-gravity wormholes without exotic matter

    Get PDF
    A fundamental ingredient in wormhole physics is the flaring-out condition at the throat which, in classical general relativity, entails the violation of the null energy condition. In this work, we present the most general conditions in the context of modified gravity, in which the matter threading the wormhole throat satisfies all of the energy conditions, and it is the higher order curvature terms, which may be interpreted as a gravitational fluid, that support these nonstandard wormhole geometries. Thus, we explicitly show that wormhole geometries can be theoretically constructed without the presence of exotic matter, but are sustained in the context of modified gravity.Comment: 4 pages. V2: Slight change in title, discussion on the stability and references added; version to appear in PRD. V3: reference adde

    Single hole dynamics in dimerized spin liquids

    Full text link
    The dynamics of a single hole in quantum antiferromagnets is influenced by magnetic fluctuations. In the present work we consider two situations. The first one corresponds to a single hole in the two leg t-J spin ladder. In this case the wave function renormalization is relatively small and the quasiparticle residue of the S=1/2 state remains close to unity. However at large t/J there are higher spin (S=3/2,5/2,..) bound states of the hole with the magnetic excitations, and therefore there is a crossover from quasiparticles with S=1/2 to quasiparticles with higher spin. The second situation corresponds to a single hole in two coupled antiferromagnetic planes very close to the point of antiferromagnetic instability. In this case the hole wave function renormalization is very strong and the quasiparticle residue vanishes at the point of instability.Comment: 12 pages, 3 figure

    Long-range dynamics of magnetic impurities coupled to a two-dimensional Heisenberg antiferromagnet

    Full text link
    We consider a two-dimensional Heisenberg antiferromagnet on a square lattice with weakly coupled impurities, i.e. additional spins interacting with the host magnet by a small dimensionless coupling constant g<<1. Using linear spin-wave theory, we find that the magnetization disturbance at distance r from a single impurity behaves as g/r for 1>1/g. Surprisingly the disturbance is inversely proportional to the coupling constant! The interaction between two impurities separated by a distance r is proportional to g^2/r for 1>1/g. Hence at large distances, the interaction is universal and independent of the coupling constant. We also find that the frequency of Rabi oscillations between two impurities is proportional to g^2 ln(gr) at 1<<r<<1/g, logarithmically enhanced compared to the spin-wave width. This leads to a new mechanism for NMR, NQR and EPR line broadening. All these astonishing results are due to the gapless spectrum of the magnetic excitations in the quantum antiferromagnet.Comment: 6 pages, 5 figure

    Low-energy singlet and triplet excitations in the spin-liquid phase of the two-dimensional J1-J2 model

    Full text link
    We analyze the stability of the spontaneously dimerized spin-liquid phase of the frustrated Heisenberg antiferromagnet - the J1-J2 model. The lowest triplet excitation, corresponding to breaking of a singlet bond, is found to be stable in the region 0.38 < J2/J1 < 0.62. In addition we find a stable low-energy collective singlet mode, which is closely related to the spontaneous violation of the discrete symmetry. Both modes are gapped in the quantum disordered phase and become gapless at the transition point to the Neel ordered phase (J2/J1=0.38). The spontaneous dimerization vanishes at the transition and we argue that the disappearance of dimer order is related to the vanishing of the singlet gap. We also present exact diagonalization data on a small (4x4) cluster which indeed show a structure of the spectrum, consistent with that of a system with a four-fold degenerate (spontaneously dimerized) ground state.Comment: 4 pages, 4 figures, small changes, published versio

    Stability of the spiral phase in the 2D extended t-J model

    Full text link
    We analyze the t-t'-t''-J model at low doping by chiral perturbation theory and show that the (1,0) spiral state is stabilized by the presence of t',t'' above critical values around 0.2J, assuming t/J=3.1. We find that the (magnon mediated) hole-hole interactions have an important effect on the region of charge stability in the space of parameters t',t'', generally increasing stability, while the stability in the magnetic sector is guaranteed by the presence of spin quantum fluctuations (order from disorder effect). These conclusions are based on perturbative analysis performed up to two loops, with very good convergence.Comment: 7 pages, 6 figure

    Superconducting Spiral Phase in the two-dimensional t-J model

    Full text link
    We analyse the t-t'-t''-J model, relevant to the superconducting cuprates. By using chiral perturbation theory we have determined the ground state to be a spiral for small doping \delta << 1 near half filling. In this limit the solution does not contain any uncontrolled approximations. We evaluate the spin-wave Green's functions and address the issue of stability of the spiral state, leading to the phase diagram of the model. At t'=t''=0 the spiral state is unstable towards a local enhancement of the spiral pitch, and the nature of the true ground state remains unclear. However, for values of t' and t'' corresponding to real cuprates the (1,0) spiral state is stabilized by quantum fluctuations (``order from disorder'' effect). We show that at \delta = 0.119 the spiral is commensurate with the lattice with a period of 8 lattice spacings. It is also demonstrated that spin-wave mediated superconductivity develops in the spiral state and a lower limit for the superconducting gap is derived. Even though one cannot classify the gap symmetry according to the lattice representations (s,p,d,...) since the symmetry of the lattice is spontaneously broken by the spiral, the gap always has lines of nodes along the (1,\pm 1) directions.Comment: 17 pages, 11 figure

    Molecular CP-violating magnetic moment

    Full text link
    A concept of CP-violating (T,P-odd) permanent molecular magnetic moments μCP\mu^{CP} is introduced. We relate the moments to the electric dipole moment of electron (eEDM) and estimate μCP\mu^{CP} for several diamagnetic polar molecules. The moments exhibit a steep, Z^5, scaling with the nuclear charge Z of the heavier molecular constituent. A measurement of the CP-violating magnetization of a polarized sample of heavy molecules may improve the present limit on eEDM by several orders of magnitude.Comment: 4 pages, no figures, submitted to PR
    corecore