68,532 research outputs found
Construction of the factorized steady state distribution in models of mass transport
For a class of one-dimensional mass transport models we present a simple and
direct test on the chipping functions, which define the probabilities for mass
to be transferred to neighbouring sites, to determine whether the stationary
distribution is factorized. In cases where the answer is affirmative, we
provide an explicit method for constructing the single-site weight function. As
an illustration of the power of this approach, previously known results on the
Zero-range process and Asymmetric random average process are recovered in a few
lines. We also construct new models, namely a generalized Zero-range process
and a binomial chipping model, which have factorized steady states.Comment: 6 pages, no figure
The Milky Way Galaxy as a Strong Gravitational Lens
We study the gravitational lensing effects of spiral galaxies by taking a
model of the Milky Way and computing its lensing properties. The model is
composed of a spherical Hernquist bulge, a Miyamoto-Nagai disc and an
isothermal halo. As a strong lens, a spiral galaxy like the Milky Way can give
rise to four different imaging geometries. They are (i) three images on one
side of the galaxy centre (`disc triplets'), (ii) three images with one close
to the centre (`core triplets'), (iii) five images and (iv) seven images.
Neglecting magnification bias, we show that the core triplets, disc triplets
and fivefold imaging are roughly equally likely. Even though our models contain
edge-on discs, their image multiplicities are not dominated by disc triplets.
The halo has a small effect on the caustic structure, the time delays and
brightnesses of the images. The Milky Way model has a maximum disc (i.e., the
halo is not dynamically important in the inner parts). Strong lensing by nearly
edge-on disc galaxies breaks the degeneracy between the relative contribution
of the disc and halo to the overall rotation curve. If a spiral galaxy has a
sub-maximum disc, then the astroid caustic shrinks dramatically in size, whilst
the radial caustic shrinks more modestly. This causes changes in the relative
likelihood of the image geometries, specifically (i) core triplets are now 9/2
times more likely than disc triplets, (ii) the cross section for threefold
imaging is reduced by a factor of 2/3, whilst (iii) the cross section for
fivefold imaging is reduced by 1/2. Although multiple imaging is less likely
(the cross sections are smaller), the average total magnification is greater.Comment: MNRAS, in pres
Condensation transitions in a model for a directed network with weighted links
An exactly solvable model for the rewiring dynamics of weighted, directed
networks is introduced. Simulations indicate that the model exhibits two types
of condensation: (i) a phase in which, for each node, a finite fraction of its
total out-strength condenses onto a single link; (ii) a phase in which a finite
fraction of the total weight in the system is directed into a single node. A
virtue of the model is that its dynamics can be mapped onto those of a
zero-range process with many species of interacting particles -- an exactly
solvable model of particles hopping between the sites of a lattice. This
mapping, which is described in detail, guides the analysis of the steady state
of the network model and leads to theoretical predictions for the conditions
under which the different types of condensation may be observed. A further
advantage of the mapping is that, by exploiting what is known about exactly
solvable generalisations of the zero-range process, one can infer a number of
generalisations of the network model and dynamics which remain exactly
solvable.Comment: 23 pages, 8 figure
Spacetime Supersymmetry in a nontrivial NS-NS Superstring Background
In this paper we consider superstring propagation in a nontrivial NS-NS
background. We deform the world sheet stress tensor and supercurrent with an
infinitesimal B_{\mu\nu} field. We construct the gauge-covariant super-Poincare
generators in this background and show that the B_{\mu\nu} field spontaneously
breaks spacetime supersymmetry. We find that the gauge-covariant spacetime
momenta cease to commute with each other and with the spacetime supercharges.
We construct a set of "magnetic" super-Poincare generators that are conserved
for constant field strength H_{\mu\nu\lambda}, and show that these generators
obey a "magnetic" extension of the ordinary supersymmetry algebra.Comment: 13 pages, Latex. Published versio
Condensation Transition in Polydisperse Hard Rods
We study a mass transport model, where spherical particles diffusing on a
ring can stochastically exchange volume , with the constraint of a fixed
total volume , being the total number of particles. The
particles, referred to as -spheres, have a linear size that behaves as
and our model thus represents a gas of polydisperse hard rods with
variable diameters . We show that our model admits a factorized
steady state distribution which provides the size distribution that minimizes
the free energy of a polydisperse hard rod system, under the constraints of
fixed and . Complementary approaches (explicit construction of the
steady state distribution on the one hand ; density functional theory on the
other hand) completely and consistently specify the behaviour of the system. A
real space condensation transition is shown to take place for : beyond a
critical density a macroscopic aggregate is formed and coexists with a critical
fluid phase. Our work establishes the bridge between stochastic mass transport
approaches and the optimal polydispersity of hard sphere fluids studied in
previous articles
Layering Transitions and Solvation Forces in an Asymmetrically Confined Fluid
We consider a simple fluid confined between two parallel walls (substrates),
separated by a distance L. The walls exert competing surface fields so that one
wall is attractive and may be completely wet by liquid (it is solvophilic)
while the other is solvophobic. Such asymmetric confinement is sometimes termed
a `Janus Interface'. The second wall is: (i) purely repulsive and therefore
completely dry (contact angle 180 degrees) or (ii) weakly attractive and
partially dry (the contact angle is typically in the range 160-170 degrees). At
low temperatures, but above the bulk triple point, we find using classical
density functional theory (DFT) that the fluid is highly structured in the
liquid part of the density profile. In case (i) a sequence of layering
transitions occurs: as L is increased at fixed chemical potential (mu) close to
bulk gas--liquid coexistence, new layers of liquid-like density develop
discontinuously. In contrast to confinement between identical walls, the
solvation force is repulsive for all wall separations and jumps discontinuously
at each layering transition and the excess grand potential exhibits many
metastable minima as a function of the adsorption. For a fixed temperature
T=0.56Tc, where Tc is the bulk critical temperature, we determine the
transition lines in the L, mu plane. In case (ii) we do not find layering
transitions and the solvation force oscillates about zero. We discuss how our
mean-field DFT results might be altered by including effects of fluctuations
and comment on how the phenomenology we have revealed might be relevant for
experimental and simulation studies of water confined between hydrophilic and
hydrophobic substrates, emphasizing it is important to distinguish between
cases (i) and (ii).Comment: 16 pages, 13 figure
Simulations of the Population of Centaurs II: Individual Objects
Detailed orbit integrations of clones of five Centaurs -- namely, 1996 AR20,
2060 Chiron, 1995 SN55, 2000 FZ53 and 2002 FY36 -- for durations of 3 Myr are
presented. One of our Centaur sample starts with perihelion initially under the
control of Jupiter (1996 AR20), two start under the control of Saturn (Chiron
and 1995 SN55) and one each starts under the control of Uranus (2000 FZ53) and
Neptune (2002 FY36) respectively. A variety of interesting pathways are
illustrated with detailed examples including: capture into the Jovian Trojans,
repeated bursts of short-period comet behaviour, capture into mean-motion
resonances with the giant planets and into Kozai resonances, as well as
traversals of the entire Solar system. For each of the Centaurs, we provide
statistics on the numbers (i) ejected, (ii) showing short-period comet
behaviour and (iii) becoming Earth and Mars crossing. For example, Chiron has
over 60 % of its clones becoming short-period objects, whilst 1995 SN55 has
over 35 %. Clones of these two Centaurs typically make numerous close
approaches to Jupiter. At the other extreme, 2000 FZ53 has roughly 2 % of its
clones becoming short-period objects. In our simulations, typically 20 % of the
clones which become short-period comets subsequently evolve into
Earth-crossers.Comment: 10 pages, in press at MNRA
Interaction driven real-space condensation
We study real-space condensation in a broad class of stochastic mass
transport models. We show that the steady state of such models has a
pair-factorised form which generalizes the standard factorized steady states.
The condensation in this class of models is driven by interactions which give
rise to a spatially extended condensate that differs fundamentally from the
previously studied examples. We present numerical results as well as a
theoretical analysis of the condensation transition and show that the criterion
for condensation is related to the binding-unbinding transition of
solid-on-solid interfaces.Comment: 4 page
(WP 2017-02) The Great Recession and Public Education
We examine the impact of the Great Recession on K-12 education finance and employment and generate five key results. First, nearly 300,000 school employees lost their jobs. Second, schools that were heavily dependent financially on state governments were particularly vulnerable to the recession. Third local revenues from the property tax actually increased during the recession, primarily because millage rates rose in response to declining property values. Fourth, inequality in school spending rose sharply during the Great Recession. Fifth, the federal governmentâs efforts to shield education from some of the worst effects of the recession achieved their major goal
- âŠ