46 research outputs found

    Molecular and Chemical Characterization of the Biosynthesis of the 6-MSA-Derived Meroterpenoid Yanuthone D in Aspergillus niger.

    Get PDF
    SummarySecondary metabolites in filamentous fungi constitute a rich source of bioactive molecules. We have deduced the genetic and biosynthetic pathway of the antibiotic yanuthone D from Aspergillus niger. Our analyses show that yanuthone D is a meroterpenoid derived from the polyketide 6-methylsalicylic acid (6-MSA). Yanuthone D formation depends on a cluster composed of ten genes including yanA and yanI, which encode a 6-MSA polyketide synthase and a previously undescribed O-mevalon transferase, respectively. In addition, several branching points in the pathway were discovered, revealing five yanuthones (F, G, H, I, and J). Furthermore, we have identified another compound (yanuthone X1) that defines a class of yanuthones that depend on several enzymatic activities encoded by genes in the yan cluster but that are not derived from 6-MSA

    Production of β‑ionone by combined expression of carotenogenic and plant CCD1 genes in Saccharomyces cerevisiae

    Get PDF
    Background Apocarotenoids, like the C13-norisoprenoids, are natural compounds that contribute to the flavor and/or aroma of flowers and foods. They are produced in aromatic plantslike raspberries and rosesby the enzymatic cleavage of carotenes. Due to their pleasant aroma and flavour, apocarotenoids have high commercial value for the cosmetic and food industry, but currently their production is mainly assured by chemical synthesis. In the present study, a Saccharomyces cerevisiae strain that synthesizes the apocarotenoid -ionone was constructed by combining integrative vectors and high copy number episomal vectors, in an engineered strain that accumulates FPP. Results Integration of an extra copy of the geranylgeranyl diphosphate synthase gene (BTS1), together with the carotenogenic genes crtYB and crtI from the ascomycete Xanthophyllomyces dendrorhous, resulted in carotenoid producing cells. The additional integration of the carotenoid cleavage dioxygenase gene from the plant Petunia hybrida (PhCCD1) let to the production of low amounts of -ionone (0.073 ± 0.01 mg/g DCW) and changed the color of the strain from orange to yellow. The expression of the crtYB gene from a high copy number plasmid in this former strain increased -ionone concentration fivefold (0.34 ± 0.06 mg/g DCW). Additionally, the episomal expression of crtYB together with the PhCCD1 gene in the same vector resulted in a final 8.5-fold increase of -ionone concentration (0.63 ± 0.02 mg/g DCW). Batch fermentations with this strain resulted in a final specific concentration of 1 mg/g DCW at 50 h, which represents a 15-fold increase. Conclusions An efficient -ionone producing yeast platform was constructed by combining integrative and episomal constructs. By combined expression of the genes BTS1, the carotenogenic crtYB, crtI genes and the plant PhCCD1 genethe highest -ionone concentration reported to date by a cell factory was achieved. This microbial cell factory represents a starting point for flavor production by a sustainable and efficient process that could replace current methods.This work was funded by grants COPEC-UC 6C-063 and FONDECYT No 1130822, and the Novo Nordisk Foundation

    BacHBerry: BACterial Hosts for production of Bioactive phenolics from bERRY fruits

    Get PDF
    BACterial Hosts for production of Bioactive phenolics from bERRY fruits (BacHBerry) was a 3-year project funded by the Seventh Framework Programme (FP7) of the European Union that ran between November 2013 and October 2016. The overall aim of the project was to establish a sustainable and economically-feasible strategy for the production of novel high-value phenolic compounds isolated from berry fruits using bacterial platforms. The project aimed at covering all stages of the discovery and pre-commercialization process, including berry collection, screening and characterization of their bioactive components, identification and functional characterization of the corresponding biosynthetic pathways, and construction of Gram-positive bacterial cell factories producing phenolic compounds. Further activities included optimization of polyphenol extraction methods from bacterial cultures, scale-up of production by fermentation up to pilot scale, as well as societal and economic analyses of the processes. This review article summarizes some of the key findings obtained throughout the duration of the project

    Temperature-dependent structural changes in intrinsically disordered proteins: formation of alpha-helices or loss of polyproline II?

    No full text
    Structural characterization of intrinsically disordered proteins (IDPs) is mandatory for deciphering their potential unique physical and biological properties. A large number of circular dichroism (CD) studies have demonstrated that a structural change takes place in IDPs with increasing temperature, which most likely reflects formation of transient α-helices or loss of polyproline II (PPII) content. Using three IDPs, ACTR, NHE1, and Spd1, we show that the temperature-induced structural change is common among IDPs and is accompanied by a contraction of the conformational ensemble. This phenomenon was explored at residue resolution by multidimensional NMR spectroscopy. Intrinsic chemical shift referencing allowed us to identify regions of transiently formed helices and their temperature-dependent changes in helicity. All helical regions were found to lose rather than gain helical structures with increasing temperature, and accordingly these were not responsible for the change in the CD spectra. In contrast, the nonhelical regions exhibited a general temperature-dependent structural change that was independent of long-range interactions. The temperature-dependent CD spectroscopic signature of IDPs that has been amply documented can be rationalized to represent redistribution of the statistical coil involving a general loss of PPII conformations
    corecore