434 research outputs found

    Metric Operators for Quasi-Hermitian Hamiltonians and Symmetries of Equivalent Hermitian Hamiltonians

    Full text link
    We give a simple proof of the fact that every diagonalizable operator that has a real spectrum is quasi-Hermitian and show how the metric operators associated with a quasi-Hermitian Hamiltonian are related to the symmetry generators of an equivalent Hermitian Hamiltonian.Comment: 6 pages, published versio

    Delta-Function Potential with a Complex Coupling

    Full text link
    We explore the Hamiltonian operator H=-d^2/dx^2 + z \delta(x) where x is real, \delta(x) is the Dirac delta function, and z is an arbitrary complex coupling constant. For a purely imaginary z, H has a (real) spectral singularity at E=-z^2/4. For \Re(z)<0, H has an eigenvalue at E=-z^2/4. For the case that \Re(z)>0, H has a real, positive, continuous spectrum that is free from spectral singularities. For this latter case, we construct an associated biorthonormal system and use it to perform a perturbative calculation of a positive-definite inner product that renders H self-adjoint. This allows us to address the intriguing question of the nonlocal aspects of the equivalent Hermitian Hamiltonian for the system. In particular, we compute the energy expectation values for various Gaussian wave packets to show that the non-Hermiticity effect diminishes rapidly outside an effective interaction region.Comment: Published version, 14 pages, 2 figure

    Conceptual Aspects of PT-Symmetry and Pseudo-Hermiticity: A status report

    Full text link
    We survey some of the main conceptual developments in the study of PT-symmetric and pseudo-Hermitian Hamiltonian operators that have taken place during the past ten years or so. We offer a precise mathematical description of a quantum system and its representations that allows us to describe the idea of unitarization of a quantum system by modifying the inner product of the Hilbert space. We discuss the role and importance of the quantum-to-classical correspondence principle that provides the physical interpretation of the observables in quantum mechanics. Finally, we address the problem of constructing an underlying classical Hamiltonian for a unitary quantum system defined by an a priori non-Hermitian Hamiltonian.Comment: 11 page

    Application of Pseudo-Hermitian Quantum Mechanics to a Complex Scattering Potential with Point Interactions

    Full text link
    We present a generalization of the perturbative construction of the metric operator for non-Hermitian Hamiltonians with more than one perturbation parameter. We use this method to study the non-Hermitian scattering Hamiltonian: H=p^2/2m+\zeta_-\delta(x+a)+\zeta_+\delta(x-a), where \zeta_\pm and a are respectively complex and real parameters and \delta(x) is the Dirac delta function. For regions in the space of coupling constants \zeta_\pm where H is quasi-Hermitian and there are no complex bound states or spectral singularities, we construct a (positive-definite) metric operator \eta and the corresponding equivalent Hermitian Hamiltonian h. \eta turns out to be a (perturbatively) bounded operator for the cases that the imaginary part of the coupling constants have opposite sign, \Im(\zeta_+) = -\Im(\zeta_-). This in particular contains the PT-symmetric case: \zeta_+ = \zeta_-^*. We also calculate the energy expectation values for certain Gaussian wave packets to study the nonlocal nature of \rh or equivalently the non-Hermitian nature of \rH. We show that these physical quantities are not directly sensitive to the presence of PT-symmetry.Comment: 22 pages, 4 figure

    Exact PT-Symmetry Is Equivalent to Hermiticity

    Full text link
    We show that a quantum system possessing an exact antilinear symmetry, in particular PT-symmetry, is equivalent to a quantum system having a Hermitian Hamiltonian. We construct the unitary operator relating an arbitrary non-Hermitian Hamiltonian with exact PT-symmetry to a Hermitian Hamiltonian. We apply our general results to PT-symmetry in finite-dimensions and give the explicit form of the above-mentioned unitary operator and Hermitian Hamiltonian in two dimensions. Our findings lead to the conjecture that non-Hermitian CPT-symmetric field theories are equivalent to certain nonlocal Hermitian field theories.Comment: Few typos have been corrected and a reference update

    Physical Aspects of Pseudo-Hermitian and PTPT-Symmetric Quantum Mechanics

    Full text link
    For a non-Hermitian Hamiltonian H possessing a real spectrum, we introduce a canonical orthonormal basis in which a previously introduced unitary mapping of H to a Hermitian Hamiltonian h takes a simple form. We use this basis to construct the observables O of the quantum mechanics based on H. In particular, we introduce pseudo-Hermitian position and momentum operators and a pseudo-Hermitian quantization scheme that relates the latter to the ordinary classical position and momentum observables. These allow us to address the problem of determining the conserved probability density and the underlying classical system for pseudo-Hermitian and in particular PT-symmetric quantum systems. As a concrete example we construct the Hermitian Hamiltonian h, the physical observables O, the localized states, and the conserved probability density for the non-Hermitian PT-symmetric square well. We achieve this by employing an appropriate perturbation scheme. For this system, we conduct a comprehensive study of both the kinematical and dynamical effects of the non-Hermiticity of the Hamiltonian on various physical quantities. In particular, we show that these effects are quantum mechanical in nature and diminish in the classical limit. Our results provide an objective assessment of the physical aspects of PT-symmetric quantum mechanics and clarify its relationship with both the conventional quantum mechanics and the classical mechanics.Comment: 45 pages, 13 figures, 2 table

    PT-Symmetric Versus Hermitian Formulations of Quantum Mechanics

    Full text link
    A non-Hermitian Hamiltonian that has an unbroken PT symmetry can be converted by means of a similarity transformation to a physically equivalent Hermitian Hamiltonian. This raises the following question: In which form of the quantum theory, the non-Hermitian or the Hermitian one, is it easier to perform calculations? This paper compares both forms of a non-Hermitian ix3ix^3 quantum-mechanical Hamiltonian and demonstrates that it is much harder to perform calculations in the Hermitian theory because the perturbation series for the Hermitian Hamiltonian is constructed from divergent Feynman graphs. For the Hermitian version of the theory, dimensional continuation is used to regulate the divergent graphs that contribute to the ground-state energy and the one-point Green's function. The results that are obtained are identical to those found much more simply and without divergences in the non-Hermitian PT-symmetric Hamiltonian. The O(g4)\mathcal{O}(g^4) contribution to the ground-state energy of the Hermitian version of the theory involves graphs with overlapping divergences, and these graphs are extremely difficult to regulate. In contrast, the graphs for the non-Hermitian version of the theory are finite to all orders and they are very easy to evaluate.Comment: 13 pages, REVTeX, 10 eps figure

    Scattering Theory and PT\mathcal{P}\mathcal{T}-Symmetry

    Full text link
    We outline a global approach to scattering theory in one dimension that allows for the description of a large class of scattering systems and their P\mathcal{P}-, T\mathcal{T}-, and PT\mathcal{P}\mathcal{T}-symmetries. In particular, we review various relevant concepts such as Jost solutions, transfer and scattering matrices, reciprocity principle, unidirectional reflection and invisibility, and spectral singularities. We discuss in some detail the mathematical conditions that imply or forbid reciprocal transmission, reciprocal reflection, and the presence of spectral singularities and their time-reversal. We also derive generalized unitarity relations for time-reversal-invariant and PT\mathcal{P}\mathcal{T}-symmetric scattering systems, and explore the consequences of breaking them. The results reported here apply to the scattering systems defined by a real or complex local potential as well as those determined by energy-dependent potentials, nonlocal potentials, and general point interactions.Comment: Slightly expanded revised version, 38 page

    A Physical Realization of the Generalized PT-, C-, and CPT-Symmetries and the Position Operator for Klein-Gordon Fields

    Full text link
    Generalized parity (P), time-reversal (T), and charge-conjugation (C)operators were initially definedin the study of the pseudo-Hermitian Hamiltonians. We construct a concrete realization of these operators for Klein-Gordon fields and show that in this realization PT and C operators respectively correspond to the ordinary time-reversal and charge-grading operations. Furthermore, we present a complete description of the quantum mechanics of Klein-Gordon fields that is based on the construction of a Hilbert space with a relativistically invariant, positive-definite, and conserved inner product. In particular we offer a natural construction of a position operator and the corresponding localized and coherent states. The restriction of this position operator to the positive-frequency fields coincides with the Newton-Wigner operator. Our approach does not rely on the conventional restriction to positive-frequency fields. Yet it provides a consistent quantum mechanical description of Klein-Gordon fields with a genuine probabilistic interpretation.Comment: 20 pages, published versio

    Invisibility and PT-symmetry

    Full text link
    For a general complex scattering potential defined on a real line, we show that the equations governing invisibility of the potential are invariant under the combined action of parity and time-reversal (PT) transformation. We determine the PT-symmetric an well as non-PT-symmetric invisible configurations of an easily realizable exactly solvable model that consists of a two-layer planar slab consisting of optically active material. Our analysis shows that although PT-symmetry is neither necessary nor sufficient for the invisibility of a scattering potential, it plays an important role in the characterization of the invisible configurations. A byproduct of our investigation is the discovery of certain configurations of our model that are effectively reflectionless in a spectral range as wide as several hundred nanometers.Comment: 11 pages, 3 figures, revised version, accepted for publication in Phys.Rev.
    corecore