197 research outputs found
Inflammasome activation causes dual recruitment of NLRC4 and NLRP3 to the same macromolecular complex.
Pathogen recognition by nucleotide-binding oligomerization domain-like receptor (NLR) results in the formation of a macromolecular protein complex (inflammasome) that drives protective inflammatory responses in the host. It is thought that the number of inflammasome complexes forming in a cell is determined by the number of NLRs being activated, with each NLR initiating its own inflammasome assembly independent of one another; however, we show here that the important foodborne pathogen Salmonella enterica serovar Typhimurium (S. Typhimurium) simultaneously activates at least two NLRs, whereas only a single inflammasome complex is formed in a macrophage. Both nucleotide-binding domain and leucine-rich repeat caspase recruitment domain 4 and nucleotide-binding domain and leucine-rich repeat pyrin domain 3 are simultaneously present in the same inflammasome, where both NLRs are required to drive IL-1β processing within the Salmonella-infected cell and to regulate the bacterial burden in mice. Superresolution imaging of Salmonella-infected macrophages revealed a macromolecular complex with an outer ring of apoptosis-associated speck-like protein containing a caspase activation and recruitment domain and an inner ring of NLRs, with active caspase effectors containing the pro-IL-1β substrate localized internal to the ring structure. Our data reveal the spatial localization of different components of the inflammasome and how different members of the NLR family cooperate to drive robust IL-1β processing during Salmonella infection.S.M.M was supported by a Cambridge International Scholarship. T.P.M was supported by a
Wellcome Trust Research Career Development Fellowship (WT085090MA). This study was
supported by Biotechnology and Biological Sciences Research Council (BBSRC) grants
(BB/H003916/1 and BB/K006436/1) and a BBSRC Research Development Fellowship
(BB/H021930/1) awarded to C.E.B.http://www.pnas.org/content/early/2014/05/05/1402911111.abstrac
Recommended from our members
Polymorphisms at amino acid residues 141 and 154 influence conformational variation in ovine PrP.
Polymorphisms in ovine PrP at amino acid residues 141 and 154 are associated with susceptibility to ovine prion disease: Leu141Arg154 with classical scrapie and Phe141Arg154 and Leu141His154 with atypical scrapie. Classical scrapie is naturally transmissible between sheep, whereas this may not be the case with atypical scrapie. Critical amino acid residues will determine the range or stability of structural changes within the ovine prion protein or its functional interaction with potential cofactors, during conversion of PrPC to PrPSc in these different forms of scrapie disease. Here we computationally identified that regions of ovine PrP, including those near amino acid residues 141 and 154, displayed more conservation than expected based on local structural environment. Molecular dynamics simulations showed these conserved regions of ovine PrP displayed genotypic differences in conformational repertoire and amino acid side-chain interactions. Significantly, Leu141Arg154 PrP adopted an extended beta sheet arrangement in the N-terminal palindromic region more frequently than the Phe141Arg154 and Leu141His154 variants. We supported these computational observations experimentally using circular dichroism spectroscopy and immunobiochemical studies on ovine recombinant PrP. Collectively, our observations show amino acid residues 141 and 154 influence secondary structure and conformational change in ovine PrP that may correlate with different forms of scrapie.Peer Reviewe
Unique genome-wide transcriptome profiles of chicken macrophages exposed to Salmonella-derived endotoxin
<p>Abstract</p> <p>Background</p> <p>Macrophages play essential roles in both innate and adaptive immune responses. Bacteria require endotoxin, a complex lipopolysaccharide, for outer membrane permeability and the host interprets endotoxin as a signal to initiate an innate immune response. The focus of this study is kinetic and global transcriptional analysis of the chicken macrophage response to <it>in vitro </it>stimulation with endotoxin from <it>Salmonella </it><it>typhimurium</it>-798.</p> <p>Results</p> <p>The 38535-probeset Affymetrix GeneChip Chicken Genome array was used to profile transcriptional response to endotoxin 1, 2, 4, and 8 hours post stimulation (hps). Using a maximum FDR (False Discovery Rate) of 0.05 to declare genes as differentially expressed (DE), we found 13, 33, 1761 and 61 DE genes between endotoxin-stimulated versus non-stimulated cells at 1, 2, 4 and 8 hps, respectively. QPCR demonstrated that endotoxin exposure significantly affected the mRNA expression of <it>IL1B</it>, <it>IL6</it>, <it>IL8</it>, and <it>TLR15</it>, but not <it>IL10 </it>and <it>IFNG </it>in HD 11 cells. Ingenuity Pathway Analysis showed that 10% of the total DE genes were involved in inflammatory response. Three, 9.7, 96.8, and 11.8% of the total DE inflammatory response genes were significantly differentially expressed with endotoxin stimulation at 1, 2, 4 and 8 hps, respectively. The <it>NFKBIA, IL1B, IL8 and CCL4 </it>genes were consistently induced at all times after endotoxin treatment. <it>NLRC5 </it>(CARD domain containing, NOD-like receptor family, RCJMB04_18i2), an intracellular receptor, was induced in HD11 cells treated with endotoxin.</p> <p>Conclusions</p> <p>As above using an <it>in vitro </it>model of chicken response to endotoxin, our data revealed the kinetics of gene networks involved in host response to endotoxin and extend the known complexity of networks in chicken immune response to Gram-negative bacteria such as <it>Salmonella</it>. The induction of <it>NFKBIA, IL1B, IL8, CCL4 </it>genes is a consistent signature of host response to endotoxin over time. We make the first report of induction of a NOD-like receptor family member in response to <it>Salmonella </it>endotoxin in chicken macrophages.</p
Experimental modeling of hypoxia in pregnancy and early postnatal life
The important role of equilibrium of environmental factors during the embryo-fetal period is undisputable. Women of reproductive age are increasingly exposed to various environmental risk factors such as hypoxia, prenatal viral infections, use of drugs, smoking, complications of birth or stressful life events. These early hazards represent an important risk for structural and/or functional maldevelopment of the fetus and neonates. Impairment of oxygen/energy supply during the pre- and perinatal period may affect neuronal functions and induce cell death. Thus when death of the newborn is not occurring following intrauterine hypoxia, various neurological deficits, including hyperactivity, learning disabilities, mental retardation, epilepsy, cerebral palsy, dystonia etc., may develop both in humans and in experimental animals. In our animal studies we used several approaches for modeling hypoxia in rats during pregnancy and shortly after delivery, i.e. chronic intrauterine hypoxia induced by the antiepileptic drug phenytoin, neonatal anoxia by decreased oxygen saturation in 2-day-old pups. Using these models we were able to test potential protective properties of natural (vitamin E, melatonin) and synthetic (stobadine) compounds. Based on our results, stobadine was also able to reduce hypoxia-induced hyperactivity and the antioxidant capacity of stobadine exceeded that of vitamin E and melatonin, and contrary to vitamin E, stobadine had no adverse effects on developing fetus and offspring
A Stochastic Model of Latently Infected Cell Reactivation and Viral Blip Generation in Treated HIV Patients
Motivated by viral persistence in HIV+ patients on long-term anti-retroviral treatment (ART), we present a stochastic model of HIV viral dynamics in the blood stream. We consider the hypothesis that the residual viremia in patients on ART can be explained principally by the activation of cells latently infected by HIV before the initiation of ART and that viral blips (clinically-observed short periods of detectable viral load) represent large deviations from the mean. We model the system as a continuous-time, multi-type branching process. Deriving equations for the probability generating function we use a novel numerical approach to extract the probability distributions for latent reservoir sizes and viral loads. We find that latent reservoir extinction-time distributions underscore the importance of considering reservoir dynamics beyond simply the half-life. We calculate blip amplitudes and frequencies by computing complete viral load probability distributions, and study the duration of viral blips via direct numerical simulation. We find that our model qualitatively reproduces short small-amplitude blips detected in clinical studies of treated HIV infection. Stochastic models of this type provide insight into treatment-outcome variability that cannot be found from deterministic models
Identification of LukPQ, a novel, equid-adapted leukocidin of Staphylococcus aureus.
Bicomponent pore-forming leukocidins are a family of potent toxins secreted by Staphylococcus aureus, which target white blood cells preferentially and consist of an S- and an F-component. The S-component recognizes a receptor on the host cell, enabling high-affinity binding to the cell surface, after which the toxins form a pore that penetrates the cell lipid bilayer. Until now, six different leukocidins have been described, some of which are host and cell specific. Here, we identify and characterise a novel S. aureus leukocidin; LukPQ. LukPQ is encoded on a 45 kb prophage (ΦSaeq1) found in six different clonal lineages, almost exclusively in strains cultured from equids. We show that LukPQ is a potent and specific killer of equine neutrophils and identify equine-CXCRA and CXCR2 as its target receptors. Although the S-component (LukP) is highly similar to the S-component of LukED, the species specificity of LukPQ and LukED differs. By forming non-canonical toxin pairs, we identify that the F-component contributes to the observed host tropism of LukPQ, thereby challenging the current paradigm that leukocidin specificity is driven solely by the S-component
Structure of the pre-60S ribosomal subunit with nuclear export factor Arx1 bound at the exit tunnel
Pre-ribosomal particles evolve in the nucleus through transient interaction with biogenesis factors, before export to the cytoplasm. Here, we report the architecture of the late pre-60S particle purified from Saccharomyces cerevisiae through Arx1, a nuclear export factor with structural homology to methionine aminopeptidases, or its binding partner Alb1. Cryo-electron microscopy reconstruction of the Arx1-particle at 11.9 Å resolution reveals regions of extra densities on the pre-60S particle attributed to associated biogenesis factors, confirming the immature state of the nascent subunit. One of these densities could be unambiguously assigned to Arx1. Immuno-electron microscopy and UV cross-linking localize Arx1 close to the ribosomal exit tunnel in direct contact with ES27, a highly dynamic eukaryotic rRNA expansion segment. The binding of Arx1 at the exit tunnel may position this export factor to prevent premature recruitment of ribosome-associated factors active during translation
An “Escape Clock” for Estimating the Turnover of SIV DNA in Resting CD4+ T Cells
Persistence of HIV DNA presents a major barrier to the complete control of HIV infection under current therapies. Most studies suggest that cells with latently integrated HIV decay very slowly under therapy. However, it is much more difficult to study the turnover and persistence of HIV DNA during active infection. We have developed an “escape clock” approach for measuring the turnover of HIV DNA in resting CD4+ T cells. This approach studies the replacement of wild-type (WT) SIV DNA present in early infection by CTL escape mutant (EM) strains during later infection. Using a strain-specific real time PCR assay, we quantified the relative amounts of WT and EM strains in plasma SIV RNA and cellular SIV DNA. Thus we can track the formation and turnover of SIV DNA in sorted resting CD4+ T cells. We studied serial plasma and PBMC samples from 20 SIV-infected Mane-A*10 positive pigtail macaques that have a signature Gag CTL escape mutation. In animals with low viral load, WT virus laid down early in infection is extremely stable, and the decay of this WT species is very slow, consistent with findings in subjects on anti-retroviral medications. However, during active, high level infection, most SIV DNA in resting cells was turning over rapidly, suggesting a large pool of short-lived DNA produced by recent infection events. Our results suggest that, in order to reduce the formation of a stable population of SIV DNA, it will be important either to intervene very early or intervene during active replication
- …