264 research outputs found
Van A tot Z : wat kunnen gemeenten doen om duurzaam voedsel te stimuleren?
Voedsel leeft en staat volop in de belangstelling. Op veel plaatsen in Nederland zijn er voedselinitiatieven. Streekmarkten worden georganiseerd, school- en moestuinen worden opgezet, de jeugd krijgt smaaklessen en gaat op boerderijbezoek. Voedsel bindt mensen en brengt mensen samen. Verandering van de huidige voedselconsumptie en productie is hard nodig, ondermeer omdat wereldwijd de bevolking toeneemt, voorraden van een aantal cruciale grondstoffen eindig zijn en voedselzekerheid lang niet voor iedereen een gegeven is. Aan de hand van 24 acties van A tot Z laten we zien wat gemeenten (kunnen) doen om de ambities uit de Nota Duurzaam Voedsel te realisere
Future changes in Mekong River hydrology: impact of climate change and reservoir operation on discharge
The transboundary Mekong River is facing two ongoing changes that are expected to significantly impact its hydrology and the characteristics of its exceptional flood pulse. The rapid economic development of the riparian countries has led to massive plans for hydropower construction, and projected climate change is expected to alter the monsoon patterns and increase temperature in the basin. The aim of this study is to assess the cumulative impact of these factors on the hydrology of the Mekong within next 20–30 yr. We downscaled the output of five general circulation models (GCMs) that were found to perform well in the Mekong region. For the simulation of reservoir operation, we used an optimisation approach to estimate the operation of multiple reservoirs, including both existing and planned hydropower reservoirs. For the hydrological assessment, we used a distributed hydrological model, VMod, with a grid resolution of 5 km × 5 km. In terms of climate change's impact on hydrology, we found a high variation in the discharge results depending on which of the GCMs is used as input. The simulated change in discharge at Kratie (Cambodia) between the baseline (1982–1992) and projected time period (2032–2042) ranges from −11% to +15% for the wet season and −10% to +13% for the dry season. Our analysis also shows that the changes in discharge due to planned reservoir operations are clearly larger than those simulated due to climate change: 25–160% higher dry season flows and 5–24% lower flood peaks in Kratie. The projected cumulative impacts follow rather closely the reservoir operation impacts, with an envelope around them induced by the different GCMs. Our results thus indicate that within the coming 20–30 yr, the operation of planned hydropower reservoirs is likely to have a larger impact on the Mekong hydrograph than the impacts of climate change, particularly during the dry season. On the other hand, climate change will increase the uncertainty of the estimated reservoir operation impacts: our results indicate that even the direction of the flow-related changes induced by climate change is partly unclear. Consequently, both dam planners and dam operators should pay closer attention to the cumulative impacts of climate change and reservoir operation on aquatic ecosystems, including the multibillion-dollar Mekong fisheries
Using rapid damage observations for Bayesian updating of hurricane vulnerability functions: A case study of Hurricane Dorian using social media
Rapid impact assessments immediately after disasters are crucial to enable rapid and effective mobilization of resources for response and recovery efforts. These assessments are often performed by analysing the three components of risk: hazard, exposure and vulnerability. Vulnerability curves are often constructed using historic insurance data or expert judgments, reducing their applicability for the characteristics of the specific hazard and building stock. Therefore, this paper outlines an approach to the creation of event-specific vulnerability curves, using Bayesian statistics (i.e., the zero-one inflated beta distribution) to update a pre-existing vulnerability curve (i.e., the prior) with observed impact data derived from social media. The approach is applied in a case study of Hurricane Dorian, which hit the Bahamas in September 2019. We analysed footage shot predominantly from unmanned aerial vehicles (UAVs) and other airborne vehicles posted on YouTube in the first 10 days after the disaster. Due to its Bayesian nature, the approach can be used regardless of the amount of data available as it balances the contribution of the prior and the observations
The impact of natural hazards on migration in the United States and the effect of spatial dependence
In this paper, we analyze the effect of natural hazards on migration in the United States (US) and the importance of spatial dependence in such assessments. We use two measures of migration: migration rates and flows. The model for migration flows is estimated using the gravity model, whereas out- and in-migration rates are analyzed using the spatial Durbin model. Our results indicate there is a major and significant impact of economic damage caused by natural hazards on out-migration rates and outward migration flows. In the spatial Durbin model and in the gravity model, a $1,000 dollar damage per capita is associated with an increase in out-migration of 16.0% and 9.1%, respectively. However, when spatial dependence is not accounted for, the effect of natural hazards on migration is substantially overestimated: the coefficients are 1.5–2 times larger when spatial dependence is not considered
Self-Assembly of Supramolecular Triblock Copolymer Complexes
Four different poly(tert-butoxystyrene)-b-polystyrene-b-poly(4-vinylpyridine) (PtBOS-b-PS-b-P4VP) linear triblock copolymers, with the P4VP weight fraction varying from 0.08 to 0.39, were synthesized via sequential anionic polymerization. The values of the unknown interaction parameters between styrene and tert-butoxystyrene and between tert-butoxystyrene and 4-vinylpyridine were determined from random copolymer blend miscibility studies and found to satisfy 0.031<χS,tBOS<0.034 and 0.39<χ4VP,tBOS<0.43, the latter being slightly larger than the known 0.30<χS,4VP≤0.35 value range. All triblock copolymers synthesized adopted a P4VP/PS core/shell cylindrical self-assembled morphology. From these four triblock copolymers supramolecular complexes were prepared by hydrogen bonding a stoichiometric amount of pentadecylphenol (PDP) to the P4VP blocks. Three of these complexes formed a triple lamellar ordered state with additional short length scale ordering inside the P4VP(PDP) layers. The self-assembled state of the supramolecular complex based on the triblock copolymer with the largest fraction of P4VP consisted of alternating layers of PtBOS and P4VP(PDP) layers with PS cylinders inside the latter layers. The difference in morphology between the triblock copolymers and the supramolecular complexes is due to two effects: (i) a change in effective composition and, (ii) a reduction in interfacial tension between the PS and P4VP containing domains. The small angle X-ray scattering patterns of the supramolecules systems are very temperature sensitive. A striking feature is the disappearance of the first order scattering peak of the triple lamellar state in certain temperature intervals, while the higher order peaks (including the third order) remain. This is argued to be due to the thermal sensitivity of the hydrogen bonding and thus directly related to the very nature of these systems.
Uncertainty and Bias in Global to Regional Scale Assessments of Current and Future Coastal Flood Risk
This study provides a literature-based comparative assessment of uncertainties and biases in global to world-regional scale assessments of current and future coastal flood risks, considering mean and extreme sea-level hazards, the propagation of these into the floodplain, people and coastal assets exposed, and their vulnerability. Globally, by far the largest bias is introduced by not considering human adaptation, which can lead to an overestimation of coastal flood risk in 2100 by up to factor 1300. But even when considering adaptation, uncertainties in how coastal societies will adapt to sea-level rise dominate with a factor of up to 27 all other uncertainties. Other large uncertainties that have been quantified globally are associated with socio-economic development (factors 2.3–5.8), digital elevation data (factors 1.2–3.8), ice sheet models (factor 1.6–3.8) and greenhouse gas emissions (factors 1.6–2.1). Local uncertainties that stand out but have not been quantified globally, relate to depth-damage functions, defense failure mechanisms, surge and wave heights in areas affected by tropical cyclones (in particular for large return periods), as well as nearshore interactions between mean sea-levels, storm surges, tides and waves. Advancing the state-of-the-art requires analyzing and reporting more comprehensively on underlying uncertainties, including those in data, methods and adaptation scenarios. Epistemic uncertainties in digital elevation, coastal protection levels and depth-damage functions would be best reduced through open community-based efforts, in which many scholars work together in collecting and validating these data
Planktic foraminiferal shell thinning in the Arabian Sea due to anthropogenic ocean acidification?
About one third of the anthropogenic carbon dioxide (CO<sub>2</sub>) released into the atmosphere in the past two centuries has been taken up by the ocean. As CO<sub>2</sub> invades the surface ocean, carbonate ion concentrations and pH are lowered. Laboratory studies indicate that this reduces the calcification rates of marine calcifying organisms, including planktic foraminifera. Such a reduction in calcification resulting from anthropogenic CO<sub>2</sub> emissions has not been observed, or quantified in the field yet. Here we present the findings of a study in the Western Arabian Sea that uses shells of the surface water dwelling planktic foraminifer <i>Globigerinoides ruber</i> in order to test the hypothesis that anthropogenically induced acidification has reduced shell calcification of this species. We found that light, thin-walled shells from the surface sediment are younger (based on <sup>14</sup>C and &delta;<sup>13</sup>C measurements) than the heavier, thicker-walled shells. Shells in the upper, bioturbated, sediment layer were significantly lighter compared to shells found below this layer. These observations are consistent with a scenario where anthropogenically induced ocean acidification reduced the rate at which foraminifera calcify, resulting in lighter shells. On the other hand, we show that seasonal upwelling in the area also influences their calcification and the stable isotope (&delta;<sup>13</sup>C and &delta;<sup>18</sup>O) signatures recorded by the foraminifera shells. Plankton tow and sediment trap data show that lighter shells were produced during upwelling and heavier ones during non-upwelling periods. Seasonality alone, however, cannot explain the <sup>14</sup>C results, or the increase in shell weight below the bioturbated sediment layer. We therefore must conclude that probably both the processes of acidification and seasonal upwelling are responsible for the presence of light shells in the top of the sediment and the age difference between thick and thin specimens
Assessing urban system vulnerabilities to flooding to improve resilience and adaptation in spatial planning
Fluvial, pluvial and coastal flooding are the most frequent and costly natural hazard. Cities are social hubs and life in cities is reliant on a number of services and functions such as housing, healthcare, education and other key daily facilities. Urban flooding can cause significant disruption to these services and wider impacts on the population. These impacts may be short or long with a variably spatial scale: urban systems are spatially distributed and the nature of this can have significant effects on flood impacts. From an urban-planning perspective, measuring this disruption and its consequences is fundamental in order to develop more resilient cities. Whereas the assessment of physical vulnerabilities and direct damages is commonly addressed, new methodologies for assessing the systemic vulnerability and indirect damages at the urban scale are required. The proposed systemic approach recognizes the city as a collection of sub-systems or functional units (such as neighborhoods and suburbs), interconnected through the road network, providing key daily services to inhabitants (e.g., healthcare facilities, schools, food shops, leisure and cultural services). Each city is part of broader systems—which may or may not match administrative boundaries—and, as such, needs to be connected to its wider surroundings in a multi-scalar perspective. The systemic analysis, herein limited to residential households, is based on network-accessibility measures and evaluates the presence, the distribution among urban units and the redundancy of key daily services. Trying to spatially sketch the existence of systemic interdependences between neighborhoods, suburbs and municipalities, the proposed method highlights how urban systemic vulnerability spreads beyond the flooded areas. The aim is to understand which planning patterns and existing mixed-use developments are more flood resilient, thereby informing future urban development and regeneration projects. The methodology has been developed based on GIS and applied to an Italian municipality (Noale) in the metropolitan area of Venice, NE Italy
- …