734 research outputs found
Volume, Coulomb, and volume-symmetry coefficients of nucleus incompressibility in the relativistic mean field theory with the excluded volume effects
The relation among the volume coefficient (=incompressibility of the
nuclear matter), the Coulomb coefficient , and the volume-symmetry
coefficient of the nucleus incompressibility are studied in the
framework of the relativistic mean field theory with the excluded volume
effects of the nucleons, under the assumption of the scaling model. It is found
that MeV is necessary to account for the empirical values of ,
, and , simultaneously, as is in the case of the point-like
nucleons. The result is independent on the detail descriptions of the potential
of the -meson self-interaction and is almost independent on the
excluded volume of the nucleons.Comment: PACS numbers, 21.65.+f, 21.30.+
Compressional properties of nuclear matter in the relativistic mean field theory with the excluded volume effects
Compressional properties of nuclear matter are studied by using the mean
field theory with the excluded volume effects of the nucleons. It is found that
the excluded volume effects make it possible to fit the empirical data of the
Coulomb coefficient of nucleus incompressibility, even if the volume
coefficient is small(MeV). However, the symmetry properties favor
MeV as in the cases of the mean field theory of point-like
nucleons.Comment: PACS numbers, 21.65.+f, 21.30.+
Four-Photon Quantum Interferometry at a Telecom Wavelength
We report the experimental demonstration of four-photon quantum interference
using telecom-wavelength photons. Realization of multi-photon quantum
interference is essential to linear optics quantum information processing and
measurement-based quantum computing. We have developed a source that
efficiently emits photon pairs in a pure spectrotemporal mode at a telecom
wavelength region, and have demonstrated the quantum interference exhibiting
the reduced fringe intervals that correspond to the reduced de Broglie
wavelength of up to the four photon `NOON' state. Our result should open a path
to practical quantum information processing using telecom-wavelength photons.Comment: 4 pages, 4 figure
Theory of multiwave mixing and decoherence control in qubit array system
We develop a theory to analyze the decoherence effect in a charged qubit
array system with photon echo signals in the multiwave mixing configuration. We
present how the decoherence suppression effect by the {\it bang-bang} control
with the pulses can be demonstrated in laboratory by using a bulk
ensemble of exciton qubits and optical pulses whose pulse area is even smaller
than . Analysis is made on the time-integated multiwave mixing signals
diffracted into certain phase matching directions from a bulk ensemble.
Depending on the pulse interval conditions, the cross over from the decoherence
acceleration regime to the decoherence suppression regime, which is a peculiar
feature of the coherent interaction between a qubit and the reservoir bosons,
may be observed in the time-integated multiwave mixing signals in the realistic
case including inhomogeneous broadening effect. Our analysis will successfully
be applied to precise estimation of the reservoir parameters from experimental
data of the direction resolved signal intensities obtained in the multiwave
mixing technique.Comment: 19 pages, 11 figure
Experimental demonstration of quantum source coding
We report an experimental demonstration of Schumacher's quantum noiseless
coding theorem. Our experiment employs a sequence of single photons each of
which represents three qubits. We initially prepare each photon in one of a set
of 8 non-orthogonal codeword states corresponding to the value of a block of
three binary letters. We use quantum coding to compress this quantum data into
a two-qubit quantum channel and then uncompress the two-qubit channel to
restore the original data with a fidelity approaching the theoretical limit.Comment: 5 pages, 4 figure
Incompressibility of nuclear matter, and Coulomb and volume-symmetry coefficients of nucleus incompressibility in the relativistic mean field theory
The volume coefficient K(=incompressibility of the nuclear matter), the Coulomb coefficient K_c, and the volume-symmetry coefficient K_{vs} of the nucleus incompressibility are studied in the framework of the relativistic mean field theory, with aid of the scaling model. It is found that K= 300\pm 50MeV is necessary to account for the empirical values of K_v, K_c, and K_{vs}, simultaneously. The result is independent on the detail descriptions of the potential of the \sigma-meson self-interaction and is almost independent of the strength of the \omega-meson self-interaction
Quark condensate in nuclear matter based on Nuclear Schwinger-Dyson formalism
The effects of higher order corrections of ring diagrams for the quark
condensate are studied by using the bare vertex Nuclear Schwinger Dyson
formalism based on - model. At the high density the quark
condensate is reduced by the higher order contribution of ring diagrams more
than the mean field theory or the Hartree-Fock
- …