734 research outputs found

    Volume, Coulomb, and volume-symmetry coefficients of nucleus incompressibility in the relativistic mean field theory with the excluded volume effects

    Full text link
    The relation among the volume coefficient KK(=incompressibility of the nuclear matter), the Coulomb coefficient KcK_c, and the volume-symmetry coefficient KvsK_{vs} of the nucleus incompressibility are studied in the framework of the relativistic mean field theory with the excluded volume effects of the nucleons, under the assumption of the scaling model. It is found that K=300±50K= 300\pm 50MeV is necessary to account for the empirical values of KK, KcK_c, and KvsK_{vs}, simultaneously, as is in the case of the point-like nucleons. The result is independent on the detail descriptions of the potential of the σ\sigma-meson self-interaction and is almost independent on the excluded volume of the nucleons.Comment: PACS numbers, 21.65.+f, 21.30.+

    Compressional properties of nuclear matter in the relativistic mean field theory with the excluded volume effects

    Get PDF
    Compressional properties of nuclear matter are studied by using the mean field theory with the excluded volume effects of the nucleons. It is found that the excluded volume effects make it possible to fit the empirical data of the Coulomb coefficient KcK_{c} of nucleus incompressibility, even if the volume coefficient KK is small(∼150\sim 150MeV). However, the symmetry properties favor K=300±50K=300\pm 50MeV as in the cases of the mean field theory of point-like nucleons.Comment: PACS numbers, 21.65.+f, 21.30.+

    Four-Photon Quantum Interferometry at a Telecom Wavelength

    Full text link
    We report the experimental demonstration of four-photon quantum interference using telecom-wavelength photons. Realization of multi-photon quantum interference is essential to linear optics quantum information processing and measurement-based quantum computing. We have developed a source that efficiently emits photon pairs in a pure spectrotemporal mode at a telecom wavelength region, and have demonstrated the quantum interference exhibiting the reduced fringe intervals that correspond to the reduced de Broglie wavelength of up to the four photon `NOON' state. Our result should open a path to practical quantum information processing using telecom-wavelength photons.Comment: 4 pages, 4 figure

    Theory of multiwave mixing and decoherence control in qubit array system

    Full text link
    We develop a theory to analyze the decoherence effect in a charged qubit array system with photon echo signals in the multiwave mixing configuration. We present how the decoherence suppression effect by the {\it bang-bang} control with the π\pi pulses can be demonstrated in laboratory by using a bulk ensemble of exciton qubits and optical pulses whose pulse area is even smaller than π\pi. Analysis is made on the time-integated multiwave mixing signals diffracted into certain phase matching directions from a bulk ensemble. Depending on the pulse interval conditions, the cross over from the decoherence acceleration regime to the decoherence suppression regime, which is a peculiar feature of the coherent interaction between a qubit and the reservoir bosons, may be observed in the time-integated multiwave mixing signals in the realistic case including inhomogeneous broadening effect. Our analysis will successfully be applied to precise estimation of the reservoir parameters from experimental data of the direction resolved signal intensities obtained in the multiwave mixing technique.Comment: 19 pages, 11 figure

    Experimental demonstration of quantum source coding

    Get PDF
    We report an experimental demonstration of Schumacher's quantum noiseless coding theorem. Our experiment employs a sequence of single photons each of which represents three qubits. We initially prepare each photon in one of a set of 8 non-orthogonal codeword states corresponding to the value of a block of three binary letters. We use quantum coding to compress this quantum data into a two-qubit quantum channel and then uncompress the two-qubit channel to restore the original data with a fidelity approaching the theoretical limit.Comment: 5 pages, 4 figure

    Incompressibility of nuclear matter, and Coulomb and volume-symmetry coefficients of nucleus incompressibility in the relativistic mean field theory

    Get PDF
    The volume coefficient K(=incompressibility of the nuclear matter), the Coulomb coefficient K_c, and the volume-symmetry coefficient K_{vs} of the nucleus incompressibility are studied in the framework of the relativistic mean field theory, with aid of the scaling model. It is found that K= 300\pm 50MeV is necessary to account for the empirical values of K_v, K_c, and K_{vs}, simultaneously. The result is independent on the detail descriptions of the potential of the \sigma-meson self-interaction and is almost independent of the strength of the \omega-meson self-interaction

    Quark condensate in nuclear matter based on Nuclear Schwinger-Dyson formalism

    Full text link
    The effects of higher order corrections of ring diagrams for the quark condensate are studied by using the bare vertex Nuclear Schwinger Dyson formalism based on σ\sigma-ω\omega model. At the high density the quark condensate is reduced by the higher order contribution of ring diagrams more than the mean field theory or the Hartree-Fock
    • …
    corecore