50 research outputs found

    Characterization of thioredoxin y, a new type of thioredoxin identified in the genome of Chlamydomonas reinhardtii

    Get PDF
    AbstractThe sequencing of the Arabidopsis genome revealed a multiplicity of thioredoxins (TRX), ubiquitous protein disulfide oxido-reductases. We have analyzed the TRX family in the genome of the unicellular green alga Chlamydomonas reinhardtii and identified eight different thioredoxins for which we have cloned and sequenced the corresponding cDNAs. One of these TRXs represents a new type that we named TRX y. This most probably chloroplastic TRX is highly conserved in photosynthetic organisms. The biochemical characterization of the recombinant protein shows that it exhibits a thermal stability profile and specificity toward target enzymes completely different from those of TRXs characterized so far

    A cDNA Clone Encoding Chlamydomonas reinhardtii Preferredoxin

    Full text link

    Redox signalling in the chloroplast: structure of oxidized pea fructose-1,6-bisphosphate phosphatase.

    No full text
    Sunlight provides the energy source for the assimilation of carbon dioxide by photosynthesis, but it also provides regulatory signals that switch on specific sets of enzymes involved in the alternation of light and dark metabolisms in chloroplasts. Capture of photons by chlorophyll pigments triggers redox cascades that ultimately activate target enzymes via the reduction of regulatory disulfide bridges by thioredoxins. Here we report the structure of the oxidized, low-activity form of chloroplastic fructose-1, 6-bisphosphate phosphatase (FBPase), one of the four enzymes of the Calvin cycle whose activity is redox-regulated by light. The regulation is of allosteric nature, with a disulfide bridge promoting the disruption of the catalytic site across a distance of 20 A. Unexpectedly, regulation of plant FBPases by thiol-disulfide interchange differs in every respect from the regulation of mammalian gluconeogenic FBPases by AMP. We also report a second crystal form of oxidized FBPase whose tetrameric structure departs markedly from D(2) symmetry, a rare event in oligomeric structures, and the structure of a constitutively active mutant that is unable to form the regulatory disulfide bridge. Altogether, these structures provide a structural basis for redox regulation in the chloroplast
    corecore