8 research outputs found
On semiclassical calculation of three-point functions in AdS_5 \times T^(1,1)
Recently there has been progress on the computation of two- and three-point
correlation functions with two "heavy" states via semiclassical methods. We
extend this analysis to the case of AdS_5 \times T^(1,1), and examine the
suggested procedure for the case of several simple string solutions. By making
use of AdS/CFT duality, we derive the relevant correlation functions of
operators belonging to the dual gauge theory.Comment: 18 pages, added referenc
Strings on the deformed T^{1,1}: giant magnon and single spike solutions
In this paper we find giant magnon and single spike string solutions in a
sector of the gamma-deformed conifold. We examine the dispersion relations and
find a behavior analogous to the undeformed case. The transcendental functional
relations between the conserved charges are shifted by certain gamma-dependent
term. The latter is proportional to the total momentum and thus qualitatively
different from known cases.Comment: 35 pages, no figure
Matching three-point functions of BMN operators at weak and strong coupling
The agreement between string theory and field theory is demonstrated in the
leading order by providing the first calculation of the correlator of three
two-impurity BMN states with all non-zero momenta. The calculation is performed
in two completely independent ways: in field theory by using the large-
perturbative expansion, up to the terms subleading in finite-size, and in
string theory by using the Dobashi-Yoneya 3-string vertex in the leading order
of the Penrose expansion. The two results come out to be completely identical.Comment: 14 pages, 1 figur
Holographic three-point functions for short operators
We consider holographic three-point functions for operators dual to short
string states at strong coupling in N=4 super Yang-Mills. We treat the states
as point-like as they come in from the boundary but as strings in the
interaction region in the bulk. The interaction position is determined by
saddle point, which is equivalent to conservation of the canonical momentum for
the interacting particles, and leads to conservation of their conformal
charges. We further show that for large dimensions the rms size of the
interaction region is small compared to the radius of curvature of the AdS
space, but still large compared to the string Compton wave-length. Hence, one
can approximate the string vertex operators as flat-space vertex operators with
a definite momentum, which depends on the conformal and R-charges of the
operator. We then argue that the string vertex operator dual to a primary
operator is chosen by satisfying a twisted version of Q^L=Q^R, up to spurious
terms. This leads to a unique choice for a scalar vertex operator with the
appropriate charges at the first massive level. We then comment on some
features of the corresponding three-point functions, including the application
of these results to Konishi operators.Comment: 24 pages; v2: References added, typos fixed, minor change