46 research outputs found
A ligand-independent origin of abscisic acid perception
Land plants are considered monophyletic, descending from a single successful colonization of land by an aquatic algal ancestor. The ability to survive dehydration to the point of desiccation is a key adaptive trait enabling terrestrialization. In extant land plants, desiccation tolerance depends on the action of the hormone abscisic acid (ABA) that acts through a receptor-signal transduction pathway comprising a PYRABACTIN RESISTANCE 1-like (PYL)–PROTEIN PHOSPHATASE 2C (PP2C)–SNF1-RELATED PROTEIN KINASE 2 (SnRK2) module. Early-diverging aeroterrestrial algae mount a dehydration response that is similar to that of land plants, but that does not depend on ABA: Although ABA synthesis is widespread among algal species, ABA-dependent responses are not detected, and algae lack an ABA-binding PYL homolog. This raises the key question of how ABA signaling arose in the earliest land plants. Here, we systematically characterized ABA receptor-like proteins from major land plant lineages, including a protein found in the algal sister lineage of land plants. We found that the algal PYL-homolog encoded by Zygnema circumcarinatum has basal, ligand-independent activity of PP2C repression, suggesting this to be an ancestral function. Similarly, a liverwort receptor possesses basal activity, but it is further activated by ABA. We propose that co-option of ABA to control a preexisting PP2C-SnRK2-dependent desiccation-tolerance pathway enabled transition from an all-or-nothing survival strategy to a hormone-modulated, competitive strategy by enabling continued growth of anatomically diversifying vascular plants in dehydrative conditions, enabling them to exploit their new environment more efficiently
Barcoding a Quantified Food Web: Crypsis, Concepts, Ecology and Hypotheses
The efficient and effective monitoring of individuals and populations is critically dependent on correct species identification. While this point may seem obvious, identifying the majority of the more than 100 natural enemies involved in the spruce budworm (Choristoneura fumiferana – SBW) food web remains a non-trivial endeavor. Insect parasitoids play a major role in the processes governing the population dynamics of SBW throughout eastern North America. However, these species are at the leading edge of the taxonomic impediment and integrating standardized identification capacity into existing field programs would provide clear benefits. We asked to what extent DNA barcoding the SBW food web would alter our understanding of the diversity and connectence of the food web and the frequency of generalists vs. specialists in different forest habitats. We DNA barcoded over 10% of the insects collected from the SBW food web in three New Brunswick forest plots from 1983 to 1993. For 30% of these specimens, we amplified at least one additional nuclear region. When the nodes of the food web were estimated based on barcode divergences (using molecular operational taxonomic units (MOTU) or phylogenetic diversity (PD) – the food web became much more diverse and connectence was reduced. We tested one measure of food web structure (the “bird feeder effect”) and found no difference compared to the morphologically based predictions. Many, but not all, of the presumably polyphagous parasitoids now appear to be morphologically-cryptic host-specialists. To our knowledge, this project is the first to barcode a food web in which interactions have already been well-documented and described in space, time and abundance. It is poised to be a system in which field-based methods permit the identification capacity required by forestry scientists. Food web barcoding provided an effective tool for the accurate identification of all species involved in the cascading effects of future budworm outbreaks. Integrating standardized barcodes within food webs may ultimately change the face of community ecology. This will be most poignantly felt in food webs that have not yet been quantified. Here, more accurate and precise connections will be within the grasp of any researcher for the first time
Recommended from our members
Results of EPRI/ANL DCH investigations and model development
The results of a series of five experiments are described addressing the severity and mitigation of direct containment heating. The tests were performed in a 1:30 linear scale mockup of the Zion PWR containment system using a reactor-material corium melt consisting of 60% UO/sub 2/, 16% ZrO/sub 2/, 24% SSt at nominally 2800C initial temperature. A ''worst-case'' type test involving unimpeded corium dispersal through an air atmosphere in a closed vessel produced an atmosphere heatup of 323K, equivalent to a DCH efficiency of 62%. With the addition of structural features which impeded the corium dispersal, representative of dispersal pathway features at Zion, the DCH efficiency was reduced to 1--5%. (This important result is scale dependent and requires larger scale tests such as the SURTSEY program at SNL plus mechanistic modeling for application to the reactor system.) With the addition of water in the cavity region, there was no measurable heatup of the atmosphere. This was attributable to the vigorous codispersal of water with corium which prevented the temperature of the atmosphere from significantly exceeding T/sub sat/. In this case the DCH load was replaced by the more benign ''steam spike'' from corium quench. Significant oxidation of the corium constituents occurred in the tests, adding chemical energy to the system and producing hydrogen. Overall, the results suggest that with consideration of realistic, plant specific, mitigating features, DCH may be no worse and possibly far less severe than the previously examined steam spike. Implications for accident management are addressed. 17 refs., 7 figs., 4 tabs