144 research outputs found

    Translocation t(1;3)(p36;p21) and other aberrations in a case of AML secondary to MDS

    Get PDF
    Case report on a case of t(1;3)(p36;p21) and other aberrations in a case of AML secondary to MDS

    Identification of an ASC oligomerization inhibitor for the treatment of inflammatory diseases

    Get PDF
    The ASC (apoptosis-associated speck-like protein containing a caspase recruitment domain (CARD)) protein is an scaffold component of different inflammasomes, intracellular multiprotein platforms of the innate immune system that are activated in response to pathogens or intracellular damage. The formation of ASC specks, initiated by different inflammasome receptors, promotes the recruitment and activation of procaspase-1, thereby triggering pyroptotic inflammatory cell death and pro-inflammatory cytokine release. Here we describe MM01 as the first-in-class small-molecule inhibitor of ASC that interferes with ASC speck formation. MM01 inhibition of ASC oligomerization prevents activation of procaspase-1 in vitro and inhibits the activation of different ASC-dependent inflammasomes in cell lines and primary cultures. Furthermore, MM01 inhibits inflammation in vivo in a mouse model of inflammasome-induced peritonitis. Overall, we highlight MM01 as a novel broad-spectrum inflammasome inhibitor for the potential treatment of multifactorial diseases involving the dysregulation of multiple inflammasomes

    Isolation of Flavonoids from Deguelia duckeana and Their Effect on Cellular Viability, AMPK, eEF2, eIF2 and eIF4E

    Get PDF
    Preparations of Deguelia duckeana, known in Brazil as timbó, are used by indigenous people to kill fish. Reinvestigation of its extracts resulted in the isolation and identification of 11 known flavonoids identified as 3,5,4’-trimethoxy-4-prenylstilbene (1), 4-methoxyderricidine (2), lonchocarpine (3), 4-hydroxylonchocarpine (4), 4-methoxylonchocarpine (5), 5-hydroxy-4’,7-dimethoxy-6-prenylflavanone (6), 4’-hydroxyisolonchocarpine (7), 4’-methoxyisolonchocarpine (8), 3’,4’,7-trimethoxyflavone (9), 3’,4’-methylenedioxy-7-methoxyflavone (10), and 2,2-dimethyl-chromone-5,4’-hydroxy-5’-methoxyflavone (11). Except for 1, 3, and 4 all of these flavonoids have been described for the first time in D. duckeana and the flavanone 6 for the first time in nature. Compounds 2, 3, 4, 7, 9, and 10 were studied for their potential to induce cell death in neuronal SK-N-SH cells. Only the chalcone 4 and the flavanone 7 significantly induced lactate dehydrogenase (LDH) release, which was accompanied by activation of caspase-3 and impairment of energy homeostasis in the MTT assay and may explain the killing effect on fish. Interestingly, the flavone 10 reduced cell metabolism in the MTT assay without inducing cytotoxicity in the LDH assay. Furthermore, the flavonoids 2, 3, 4, 7, and 10 induced phosphorylation of the AMP-activated protein kinase (AMPK) and the eukaryotic elongation factor 2 (eEF2). The initiation factor eIF4E was dephosphorylated in the presence of these compounds. The initiation factor eIF2alpha was not affected. Further studies are needed to elucidate the importance of the observed effects on protein synthesis and potential therapeutic perspectives.Conselho Nacional de Desenvolvimento Científico e Tecnológico/[]/CNPq/BrazilAlbert Ludwigs University Freiburg///GermanyGerman Research Foundation//DFG/GermanyUCR::Vicerrectoría de Investigación::Unidades de Investigación::Ciencias Básicas::Centro de Investigaciones en Productos Naturales (CIPRONA

    In vitro Anti-Proliferative Activity of the Rubia tinctorum and Alkanna tinctoria Root Extracts in Panel of Human Tumor Cell Lines hasson

    Get PDF
    Cancer is a devastating disease and is considered number one killer worldwide. Herbal formulations had played a key role over the past several decades in the development of anti-cancer drugs. Medicinal plants, which are endemic in Jordan, are known for several biological activities in particular their anti-cancer activity. However, the anti-cancer efficacy of the root extracts of Jordanian Rubia tinctorum and Alkanna tinctoria is not yet reported. To address this issue, this study assessed the anti-cancer activity of some root extracts obtained from Jordanian R. tinctorum and A. tinctoria in different tumor cell lines including the tongue, bladder, colon, gastric, lungs, breast, pancreas, and renal tissue origins by modified propidium iodide (PI) based monolayer assay. Among the tested root extracts obtained by different solvent systems, A. tinctoria in 100 % ethanol and methanol showed prominent anti-cancer activity against MDA-MB-231breast cancer cells (IC50: 2.98 µg/ml, IC70: 6.03 µg/ml), and CAL-27 tongue squamous carcinoma cells (IC50: 3.86 µg/ml, IC70: 5.97 µg/ml) respectively. Different solvent root extracts of R. tinctorum exhibited a similar trend of anti-tumor activity in both CAL-27 and MDA MB-231 cells. The anti-proliferative property of the extracts on CAL-27 and MDA-MB-231 cells is unclear. However, it can be concluded that the observed anti-cancer potential can be attributed to the phenolic compounds of the extracts as high polar solvents were used for extraction. The current study forms the rationale for isolating significant amount of anti-cancer active compounds from R. tinctorum and A. tinctori

    Characterisation of metabolites of the putative cancer chemopreventive agent quercetin and their effect on cyclo-oxygenase activity

    Get PDF
    Quercetin (3,5,7,3′,4′-pentahydroxyflavone) is a flavone with putative ability to prevent cancer and cardiovascular diseases. Its metabolism was evaluated in rats and human. Rats received quercetin via the intravenous (i.v.) route and metabolites were isolated from the plasma, urine and bile. Analysis was by high-performance liquid chromatography and confirmation of species identity was achieved by mass spectrometry. Quercetin and isorhamnetin, the 3′-O-methyl analogue, were found in both the plasma and urine. In addition, several polar peaks were characterised as sulphated and glucuronidated conjugates of quercetin and isorhamnetin. Extension of the metabolism studies to a cancer patient who had received quercetin as an i.v. bolus showed that (Quercetin removed) isorhamnetin and quercetin 3′-O-sulphate were major plasma metabolites. As a catechol, quercetin can potentially be converted to a quinone and subsequently conjugated with glutathione (GSH). Oxidation of quercetin with mushroom tyrosinase in the presence of GSH furnished GSH conjugates of quercetin, two mono- and one bis-substituted conjugates. However, these species were not found in biomatrices in rats treated with quercetin. As cyclo-oxygenase-2 (COX-2) expression is mechanistically linked to carcinogenesis, we examined whether quercetin and its metabolites can inhibit COX-2 in a human colorectal cancer cell line (HCA-7). Isorhamnetin and its 4′-isomer tamarixetin were potent inhibitors, reflected in a 90% decrease in prostaglandin E-2 (PGE-2) levels, a marker of COX-2 activity. Quercetin was less effective, with a 50% decline. Quercetin 3- and 7-O-sulphate had no effect on PGE-2. The results indicate that quercetin may exert its pharmacological effects, at least in part, via its metabolites

    Modeling the TNFα-Induced Apoptosis Pathway in Hepatocytes

    Get PDF
    The proinflammatory cytokine TNFα fails to provoke cell death in isolated hepatocytes but has been implicated in hepatocyte apoptosis during liver diseases associated with chronic inflammation. Recently, we showed that TNFα is able to sensitize primary murine hepatocytes cultured on collagen to Fas ligand-induced apoptosis and presented a mathematical model of the sensitizing effect. Here, we analyze how TNFα induces apoptosis in combination with the transcriptional inhibitor actinomycin D (ActD). Accumulation of reactive oxygen species (ROS) in response to TNFR activation turns out to be critical for sustained activation of JNK which then triggers mitochondrial pathway-dependent apoptosis. In addition, the amount of JNK is strongly upregulated in a ROS-dependent way. In contrast to TNFα plus cycloheximide no cFLIP degradation is observed suggesting a different apoptosis pathway in which the Itch-mediated cFLIP degradation and predominantly caspase-8 activation is not involved. Time-resolved data of the respective pro- and antiapoptotic factors are obtained and subjected to mathematical modeling. On the basis of these data we developed a mathematical model which reproduces the complex interplay regulating the phosphorylation status of JNK and generation of ROS. This model was fully integrated with our model of TNFα/Fas ligand sensitizing as well as with a published NF-κB-model. The resulting comprehensive model delivers insight in the dynamical interplay between the TNFα and FasL pathways, NF-κB and ROS and gives an example for successful model integration

    The clerodane diterpene casearin J induces apoptosis of T-ALL cells through SERCA inhibition, oxidative stress, and interference with Notch1 signaling

    Get PDF
    T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematologic malignancy that preferentially affects children and adolescents. Over 50% of human T-ALLs possess activating mutations of Notch1. The clerodane diterpene casearin J (CJ) is a natural product that inhibits the sarcoendoplasmatic reticulum calcium ATPase (SERCA) pump and induces cell death in leukemia cells, but the molecular mechanism of cytotoxicity remains poorly understood. Here we show that owing to SERCA pump inhibition, CJ induces depletion of the endoplasmic reticulum calcium pools, oxidative stress, and apoptosis via the intrinsic signaling pathway. Moreover, Notch1 signaling is reduced in T-ALL cells with auto-activating mutations in the HD-domain of Notch1, but not in cells that do not depend on Notch1 signaling. CJ also provoked a slight activation of NF-κB, and consistent with this notion a combined treatment of CJ and the NF-κB inhibitor parthenolide (Pt) led to a remarkable synergistic cell death in T-ALL cells. Altogether, our data support the concept that inhibition of the SERCA pump may be a novel strategy for the treatment of T-ALL with HD-domain-mutant Notch1 receptors and that additional treatment with the NF-κB inhibitor parthenolide may have further therapeutic benefits.UCR::Vicerrectoría de Investigación::Unidades de Investigación::Ciencias Básicas::Centro de Investigaciones en Productos Naturales (CIPRONA)UCR::Vicerrectoría de Docencia::Ciencias Básicas::Facultad de Ciencias::Escuela de Químic

    Determination of wound healing effect of caledula extracts using the scratch assy with 3T3 fibroblasts

    No full text
    Pharmacological relevance: Presentation of the scratch assay as a convenient and inexpensive in vitro tool to gain first insights in the wound healing potential of plant extracts and natural compounds.Aim of the study: The present study deals with the optimization of the scratch assay which can be used as an in vitro model for quantification of fibroblast migration to and proliferation into the wounded area. It is suitable for the first evaluation of the wound re-epithelialization potential of crude herbal extracts, isolated compounds and pharmaceutical preparations. As a proof of concept three preparations from traditional medicinal plants were investigated.Materials and methods: Swiss 3T3 albino mouse fibroblasts were used in monolayers and platelet derived growth factor as positive control. Hexane and ethanolic extracts from Calendula officinalis and Matricaria recutita, Hypericum oil as well as the triterpenoids faradiol myristate and palmitate were studied. To differentiate between proliferation and migration antimitotic mitomycin C was added.Results: Both extracts of Calendula officinalis stimulated proliferation and migration of fibroblasts at low concentrations, e.g. 10 μg/ml enhanced cell numbers by 64.35% and 70.53%, respectively. Inhibition of proliferation showed that this effect is mainly due to stimulation of migration. Faradiol myristate and palmitate gave comparable stimulation rates at an almost 50 μg/ml concentration, indicating that they contribute partially, but not most significantly to the wound healing effects of Calendula preparations. Extracts from Matricaria recutita were only moderately active. Hypericum oil was cytotoxic at concentrations higher than 0.5 μg/ml.Conclusions: The scratch assay in the present form can be used as a promising scientific approach and platform to differentiate between plant extracts known for their wound healing and their anti-inflammatory properties
    corecore