154 research outputs found

    Local scale invariance in the parity conserving nonequilibrium kinetic Ising model

    Full text link
    The local scale invariance has been investigated in the nonequilibrium kinetic Ising model exhibiting absorbing phase transition of PC type in 1+1 dimension. Numerical evidence has been found for the satisfaction of this symmetry and estimates for the critical ageing exponents are given.Comment: 8 pages, 2 figures (IOP format), final form to appear in JSTA

    Phase transitions and critical behaviour in one-dimensional non-equilibrium kinetic Ising models with branching annihilating random walk of kinks

    Full text link
    One-dimensional non-equilibrium kinetic Ising models evolving under the competing effect of spin flips at zero temperature and nearest-neighbour spin exchanges exhibiting directed percolation-like parity conserving(PC) phase transition on the level of kinks are now further investigated, numerically, from the point of view of the underlying spin system. Critical exponents characterising its statics and dynamics are reported. It is found that the influence of the PC transition on the critical exponents of the spins is strong and the origin of drastic changes as compared to the Glauber-Ising case can be traced back to the hyperscaling law stemming from directed percolation(DP). Effect of an external magnetic field, leading to DP-type critical behaviour on the level of kinks, is also studied, mainly through the generalised mean field approximation.Comment: 15 pages, using RevTeX, 13 Postscript figures included, submitted to J.Phys.A, figures 12 and 13 fixe

    Critical behaviour of annihilating random walk of two species with exclusion in one dimension

    Full text link
    The A+A0A+A\to 0, B+B0B+B\to 0 process with exclusion between the different kinds is investigated here numerically. Before treating this model explicitly, we study the generalized Domany-Kinzel cellular automaton model of Hinrichsen on the line of the parameter space where only compact clusters can grow. The simplest version is treated with two absorbing phases in addition to the active one. The two kinds of kinks which arise in this case do not react, leading to kinetics differing from standard annihilating random walk of two species. Time dependent simulations are presented here to illustrate the differences caused by exclusion in the scaling properties of usually discussed characteristic quantities. The dependence on the density and composition of the initial state is most apparent. Making use of the parallelism between this process and directed percolation limited by a reflecting parabolic surface we argue that the two kinds of kinks exert marginal perturbation on each other leading to deviations from standard annihilating random walk behavior.Comment: 12 pages, 16 figures, small typos corrected, 2 references adde
    corecore