104 research outputs found

    Effects of a Long Chain n-3 Polyunsaturated Fatty Acid-rich Multi-ingredient Nutrition Supplement on Body Composition and Physical Function in Older Adults with Low Skeletal Muscle Mass.

    Get PDF
    Six months of supplementation with a multi-ingredient nutrition supplement was investigated in older adults with low skeletal muscle mass given the recently purported benefits of such approaches. Community-dwelling older adults (age, 74.9 ± 3.6 y; M/F, 18/19) participated in a double-blind, placebo-controlled, randomized trial involving daily consumption of either fruit juice placebo (PLA) or supplement (SUPP) in the form of a 200-mL carton of a juice-based emulsion of long chain n-3 polyunsaturated fatty acids (LC n-3 PUFA) (3000 mg as 1500 mg docosahexaenoic acid and 1500 mg eicosapentaenoic acid), whey protein isolate (8 g), vitamin D3 (400 IU), and resveratrol (150 mg). Body composition, physical function, and circulating markers of metabolic health were assessed at baseline (PRE), and after 3 (MID) and 6 (POST) months of supplementation. Lean body mass (LBM) was unchanged in either group, but fat mass increased in SUPP by 1.41 (0.75, 2.07) kg at POST (+6.4%

    The dependence of theoretical synthetic spectra on α-enhancement in young, binary stellar populations

    Get PDF
    The enhancement of α elements such as oxygen is an important phase in the chemical evolution of the early Universe, with nebular material becoming enriched in these elements sooner than iron. Here, we present models which incorporate stellar spectra with α-enhanced compositions, focusing on the impact on the integrated light of young stellar populations, including those with large binary star fractions using the Binary Populations and Spectral Synthesis (BPASS) framework, while using Solar-scaled stellar evolution models. We find that broad spectrum outputs such as production of ionizing flux, the ultraviolet spectral slope and optical colours are only weakly affected by a change i

    Epidemiological, clinical and genetic aspects of adult onset isolated focal dystonia in Ireland

    Get PDF
    Background: Adult onset idiopathic isolated focal dystonia presents with a number of phenotypes. Reported prevalence rates vary considerably; well-characterized cohorts are important to our understanding of this disorder. Aim: To perform a nationwide epidemiological study of adult onset idiopathic isolated focal dystonia in the Republic of Ireland. Methods: Patients with adult onset idiopathic isolated focal dystonia were recruited from multiple sources. Diagnosis was based on assessment by a neurologist with an expertise in movement disorders. When consent was obtained, a number of clinical features including family history were assessed. Results: On the prevalence date there were 592 individuals in Ireland with adult onset idiopathic isolated focal dystonia, a point prevalence of 17.8 per 100 000 (95% confidence interval 16.4-19.2). Phenotype numbers were cervical dystonia 410 (69.2%), blepharospasm 102 (17.2%), focal hand dystonia 39 (6.6%), spasmodic dysphonia 18 (3.0%), musician\u27s dystonia 17 (2.9%) and oromandibular dystonia six (1.0%). Sixty-two (16.5%) of 375 consenting index cases had a relative with clinically confirmed adult onset idiopathic isolated focal dystonia (18 multiplex and 24 duplex families). Marked variations in the proportions of patients with tremor, segmental spread, sensory tricks, pain and psychiatric symptoms by phenotype were documented. Conclusions: The prevalence of adult onset idiopathic isolated focal dystonia in Ireland is higher than that recorded in many similar service-based epidemiological studies but is still likely to be an underestimate. The low proportion of individuals with blepharospasm may reflect reduced environmental exposure to sunlight in Ireland. This study will serve as a resource for international comparative studies of environmental and genetic factors in the pathogenesis of the disorder

    Review of research to inform California's climate scoping plan: Agriculture and working lands

    Full text link
    Agriculture in California contributes 8% of the state's greenhouse gas (GHG) emissions. To inform the state's policy and program strategy to meet climate targets, we review recent research on practices that can reduce emissions, sequester carbon and provide other co-benefits to producers and the environment across agriculture and rangeland systems. Importantly, the research reviewed here was conducted in California and addresses practices in our specific agricultural, socioeconomic and biophysical environment. Farmland conversion and the dairy and intensive livestock sector are the largest contributors to GHG emissions and offer the greatest opportunities for avoided emissions. We also identify a range of other opportunities including soil and nutrient management, integrated and diversified farming systems, rangeland management, and biomass-based energy generation. Additional research to replicate and quantify the emissions reduction or carbon sequestration potential of these practices will strengthen the evidence base for California climate policy

    Comparative metagenomic, phylogenetic and physiological analyses of soil microbial communities across nitrogen gradients

    Get PDF
    Terrestrial ecosystems are receiving elevated inputs of nitrogen (N) from anthropogenic sources and understanding how these increases in N availability affect soil microbial communities is critical for predicting the associated effects on belowground ecosystems. We used a suite of approaches to analyze the structure and functional characteristics of soil microbial communities from replicated plots in two long-term N fertilization experiments located in contrasting systems. Pyrosequencing-based analyses of 16S rRNA genes revealed no significant effects of N fertilization on bacterial diversity, but significant effects on community composition at both sites; copiotrophic taxa (including members of the Proteobacteria and Bacteroidetes phyla) typically increased in relative abundance in the high N plots, with oligotrophic taxa (mainly Acidobacteria) exhibiting the opposite pattern. Consistent with the phylogenetic shifts under N fertilization, shotgun metagenomic sequencing revealed increases in the relative abundances of genes associated with DNA/RNA replication, electron transport and protein metabolism, increases that could be resolved even with the shallow shotgun metagenomic sequencing conducted here (average of 75 000 reads per sample). We also observed shifts in the catabolic capabilities of the communities across the N gradients that were significantly correlated with the phylogenetic and metagenomic responses, indicating possible linkages between the structure and functioning of soil microbial communities. Overall, our results suggest that N fertilization may, directly or indirectly, induce a shift in the predominant microbial life-history strategies, favoring a more active, copiotrophic microbial community, a pattern that parallels the often observed replacement of K-selected with r-selected plant species with elevated N
    • …
    corecore