33 research outputs found

    Uniqueness of a Negative Mode About a Bounce Solution

    Get PDF
    We consider the uniqueness problem of a negative eigenvalue in the spectrum of small fluctuations about a bounce solution in a multidimensional case. Our approach is based on the concept of conjugate points from Morse theory and is a natural generalization of the nodal theorem approach usually used in one dimensional case. We show that bounce solution has exactly one conjugate point at τ=0\tau=0 with multiplicity one.Comment: 4 pages,LaTe

    Random versus holographic fluctuations of the background metric. II. Note on the dark energies arising due to microstructure of space-time

    Full text link
    Over the last few years a certain class of dark-energy models decaying inversely proportional to the square of the horizon distance emerged on the basis either of Heisenberg uncertainty relations or of the uncertainty relation between the four-volume and the cosmological constant. The very nature of these dark energies is understood to be the same, namely it is the energy of background space/metric fluctuations. Putting together these uncertainty relations one finds that the model of random fluctuations of the background metric is favored over the holographic one.Comment: 3 page

    Dark matter in the framework of shell-universe

    Full text link
    We show that the shell-universe model, used to explain the observed expansion rate of the universe without a dark energy component, provides also a natural mechanism for local increasing of the shell's tension leading to the modified Newton's law alternative to galactic dark matter.Comment: 8 pages, minor corrections, version to appear in GR

    Another Two Dark Energy Models Motivated from Karolyhazy Uncertainty Relation

    Full text link
    The Kaˊ\acute{\text{a}}rolyhaˊ\acute{\text{a}}zy uncertainty relation indicates that there exists the minimal detectable cell δt3\delta t^{3} over the region t3t^3 in Minkowski spacetime. Due to the energy-time uncertainty relation, the energy of the cell δt3\delta t^3 can not be less δt1\delta t^{-1}. Then we get a new energy density of metric fluctuations of Minkowski spacetime as δt4\delta t^{-4}. Motivated by the energy density, we propose two new dark energy models. One model is characterized by the age of the universe and the other is characterized by the conformal age of the universe. We find that in the two models, the dark energy mimics a cosmological constant in the late time.Comment: 10 pages, 5 figures, References are adde

    Interacting Agegraphic Dark Energy

    Full text link
    A new dark energy model, named "agegraphic dark energy", has been proposed recently, based on the so-called K\'{a}rolyh\'{a}zy uncertainty relation, which arises from quantum mechanics together with general relativity. In this note, we extend the original agegraphic dark energy model by including the interaction between agegraphic dark energy and pressureless (dark) matter. In the interacting agegraphic dark energy model, there are many interesting features different from the original agegraphic dark energy model and holographic dark energy model. The similarity and difference between agegraphic dark energy and holographic dark energy are also discussed.Comment: 10 pages, 5 figures, revtex4; v2: references added; v3: accepted by Eur. Phys. J. C; v4: published versio

    Entropy-Corrected New Agegraphic Dark Energy Model in Horava-Lifshitz Gravity

    Full text link
    In this work, we have considered the entropy-corrected new agegraphic dark energy (ECNADE) model in Horava-Lifshitz gravity in FRW universe. We have discussed the correspondence between ECNADE and other dark energy models such as DBI-essence,Yang-Mills dark energy, Chameleon field, Non-linear electrodynamics field and hessence dark energy in the context of Horava-Lifshitz gravity and reconstructed the potentials and the dynamics of the scalar field theory which describe the ECNADE.Comment: 12 page

    The accelerated scaling attractor solution of the interacting agegraphic dark energy in Brans-Dicke theory

    Full text link
    We investigate the interacting agegraphic dark energy in Brans-Dicke theory and introduce a new series general forms of dark sector coupling. As examples, we select three cases involving a linear interaction form (Model I) and two nonlinear interaction form (Model II and Model III). Our conclusions show that the accelerated scaling attractor solutions do exist in these models. We also find that these interacting agegraphic dark energy modes are consistent with the observational data. The difference in these models is that nonlinear interaction forms give more approached evolution to the standard Λ\LambdaCDM model than the linear one. Our work implies that the nonlinear interaction forms should be payed more attention.Comment: 9 pages, 10 figures, accepted in Eur. Phys. J.

    Interacting entropy-corrected new agegraphic dark energy in Brans-Dicke cosmology

    Full text link
    Motivated by a recent work of one of us [1], we extend it by using quantum (or entropy) corrected new agegraphic dark energy in the Brans-Dicke cosmology. The correction terms are motivated from the loop quantum gravity which is one of the competitive theories of quantum gravity. Taking the non-flat background spacetime along with the conformal age of the universe as the length scale, we derive the dynamical equation of state of dark energy and the deceleration parameter. An important consequence of this study is the phantom divide scenario with entropy-corrected new agegraphic dark energy. Moreover, we assume a system of dark matter, radiation and dark energy, while the later interacts only with dark matter. We obtain some essential expressions related with dark energy dynamics. The cosmic coincidence problem is also resolved in our model.Comment: 16 pages, no figure, accepted for publication in Gen. Relativ. Gra
    corecore