929 research outputs found

    Half-metallic diluted antiferromagnetic semiconductors

    Full text link
    The possibility of half-metallic antiferromagnetism, a special case of ferrimagnetism with a compensated magnetization, in the diluted magnetic semiconductors is highlighted on the basis of the first principles electronic structure calculation. As typical examples, the electrical and magnetic properties of II-VI compound semiconductors doped with 3d transition metal ion pairs--(V, Co) and (Fe, Cr)--are discussed

    Velocity of domain-wall motion induced by electrical current in a ferromagnetic semiconductor (Ga,Mn)As

    Full text link
    Current-induced domain-wall motion with velocity spanning over five orders of magnitude up to 22 m/s has been observed by magneto-optical Kerr effect in (Ga,Mn)As with perpendicular magnetic anisotropy. The data are employed to verify theories of spin-transfer by the Slonczewski-like mechanism as well as by the torque resulting from spin-flip transitions in the domain-wall region. Evidence for domain-wall creep at low currents is found.Comment: 5 pages, 3 figure

    Effect of n+-GaAs thickness and doping density on spin injection of GaMnAs/n+-GaAs Esaki tunnel junction

    Full text link
    We investigated the influence of n+-GaAs thickness and doping density of GaMnAs/n+-GaAs Esaki tunnel junction on the efficiency of the electrical electron spin injection. We prepared seven samples of GaMnAs/n+-GaAs tunnel junctions with different n+-GaAs thickness and doping density grown on identical p-AlGaAs/p-GaAs/n-AlGaAs light emitting diode (LED) structures. Electroluminescence (EL) polarization of the surface emission was measured under the Faraday configuration with external magnetic field. All samples have the bias dependence of the EL polarization, and higher EL polarization is obtained in samples in which n+-GaAs is completely depleted at zero bias. The EL polarization is found to be sensitive to the bias condition for both the (Ga,Mn)As/n+-GaAs tunnel junction and the LED structure.Comment: 4pages, 4figures, 1table, To appear in Physica

    Domain-wall resistance in ferromagnetic (Ga,Mn)As

    Full text link
    A series of microstructures designed to pin domain-walls (DWs) in (Ga,Mn)As with perpendicular magnetic anisotropy has been employed to determine extrinsic and intrinsic contributions to DW resistance. The former is explained quantitatively as resulting from a polarity change in the Hall electric field at DW. The latter is one order of magnitude greater than a term brought about by anisotropic magnetoresistance and is shown to be consistent with disorder-induced misstracing of the carrier spins subject to spatially varying magnetization

    Current-driven Magnetization Reversal in a Ferromagnetic Semiconductor (Ga,Mn)As/GaAs/(Ga,Mn)As Tunnel Junction

    Full text link
    Current-driven magnetization reversal in a ferromagnetic semiconductor based (Ga,Mn)As/GaAs/(Ga,Mn)As magnetic tunnel junction is demonstrated at 30 K. Magnetoresistance measurements combined with current pulse application on a rectangular 1.5 x 0.3 um^2 device revealed that magnetization switching occurs at low critical current densities of 1.1 - 2.2 x 10^5 A/cm^2 despite the presence of spin-orbit interaction in the p-type semiconductor system. Possible mechanisms responsible for the effect are discussed.Comment: 16 pages, 4 figure

    CoFeB Thickness Dependence of Thermal Stability Factor in CoFeB/MgO Perpendicular Magnetic Tunnel Junctions

    Full text link
    Thermal stability factor (delta) of recording layer was studied in perpendicular anisotropy CoFeB/MgO magnetic tunnel junctions (p-MTJs) with various CoFeB recording layer thicknesses and junction sizes. In all series of p-MTJs with different thicknesses, delta is virtually independent of the junction sizes of 48-81 nm in diameter. The values of delta increase linearly with increasing the recording layer thickness. The slope of the linear fit is explained well by a model based on nucleation type magnetization reversal.Comment: 12 pages, 5 figure

    Giant tunnel magnetoresistance and high annealing stability in CoFeB/MgO/CoFeB magnetic tunnel junctions with synthetic pinned layer

    Full text link
    We investigated the relationship between tunnel magnetoresistance (TMR) ratio and the crystallization of CoFeB layers through annealing in magnetic tunnel junctions (MTJs) with MgO barriers that had CoFe/Ru/CoFeB synthetic ferrimagnet pinned layers with varying Ru spacer thickness (tRu). The TMR ratio increased with increasing annealing temperature (Ta) and tRu, reaching 361% at Ta = 425C, whereas the TMR ratio of the MTJs with pinned layers without Ru spacers decreased at Ta over 325C. Ruthenium spacers play an important role in forming an (001)-oriented bcc CoFeB pinned layer, resulting in a high TMR ratio through annealing at high temperatures.Comment: 10 pages, 5 figures, submitted to Applied Physics Letter

    Anomalous Hall effect in field-effect structures of (Ga,Mn)As

    Full text link
    The anomalous Hall effect in metal-insulator-semiconductor structures having thin (Ga,Mn)As layers as a channel has been studied in a wide range of Mn and hole densities changed by the gate electric field. Strong and unanticipated temperature dependence, including a change of sign, of the anomalous Hall conductance σxy\sigma_{xy} has been found in samples with the highest Curie temperatures. For more disordered channels, the scaling relation between σxy\sigma_{xy} and σxx\sigma_{xx}, similar to the one observed previously for thicker samples, is recovered.Comment: 5 pages, 5 figure

    Spin-dependent tunneling in modulated structures of (Ga,Mn)As

    Full text link
    A model of coherent tunneling, which combines multi-orbital tight-binding approximation with Landauer-B\"uttiker formalism, is developed and applied to all-semiconductor heterostructures containing (Ga,Mn)As ferromagnetic layers. A comparison of theoretical predictions and experimental results on spin-dependent Zener tunneling, tunneling magnetoresistance (TMR), and anisotropic magnetoresistance (TAMR) is presented. The dependence of spin current on carrier density, magnetization orientation, strain, voltage bias, and spacer thickness is examined theoretically in order to optimize device design and performance.Comment: 9 pages, 13 figures, submitted to PR
    • …
    corecore