436 research outputs found
Limitations to Frechet's Metric Embedding Method
Frechet's classical isometric embedding argument has evolved to become a
major tool in the study of metric spaces. An important example of a Frechet
embedding is Bourgain's embedding. The authors have recently shown that for
every e>0 any n-point metric space contains a subset of size at least n^(1-e)
which embeds into l_2 with distortion O(\log(2/e) /e). The embedding we used is
non-Frechet, and the purpose of this note is to show that this is not
coincidental. Specifically, for every e>0, we construct arbitrarily large
n-point metric spaces, such that the distortion of any Frechet embedding into
l_p on subsets of size at least n^{1/2 + e} is \Omega((\log n)^{1/p}).Comment: 10 pages, 1 figur
Combinatorial Stokes formulas via minimal resolutions
We describe an explicit chain map from the standard resolution to the minimal
resolution for the finite cyclic group Z_k of order k. We then demonstrate how
such a chain map induces a "Z_k-combinatorial Stokes theorem", which in turn
implies "Dold's theorem" that there is no equivariant map from an n-connected
to an n-dimensional free Z_k-complex.
Thus we build a combinatorial access road to problems in combinatorics and
discrete geometry that have previously been treated with methods from
equivariant topology. The special case k=2 for this is classical; it involves
Tucker's (1949) combinatorial lemma which implies the Borsuk-Ulam theorem, its
proof via chain complexes by Lefschetz (1949), the combinatorial Stokes formula
of Fan (1967), and Meunier's work (2006).Comment: 18 page
A Tverberg type theorem for matroids
Let b(M) denote the maximal number of disjoint bases in a matroid M. It is
shown that if M is a matroid of rank d+1, then for any continuous map f from
the matroidal complex M into the d-dimensional Euclidean space there exist t
\geq \sqrt{b(M)}/4 disjoint independent sets \sigma_1,\ldots,\sigma_t \in M
such that \bigcap_{i=1}^t f(\sigma_i) \neq \emptyset.Comment: This article is due to be published in the collection of papers "A
Journey through Discrete Mathematics. A Tribute to Jiri Matousek" edited by
Martin Loebl, Jaroslav Nesetril and Robin Thomas, due to be published by
Springe
Prodsimplicial-Neighborly Polytopes
Simultaneously generalizing both neighborly and neighborly cubical polytopes,
we introduce PSN polytopes: their k-skeleton is combinatorially equivalent to
that of a product of r simplices. We construct PSN polytopes by three different
methods, the most versatile of which is an extension of Sanyal and Ziegler's
"projecting deformed products" construction to products of arbitrary simple
polytopes. For general r and k, the lowest dimension we achieve is 2k+r+1.
Using topological obstructions similar to those introduced by Sanyal to bound
the number of vertices of Minkowski sums, we show that this dimension is
minimal if we additionally require that the PSN polytope is obtained as a
projection of a polytope that is combinatorially equivalent to the product of r
simplices, when the dimensions of these simplices are all large compared to k.Comment: 28 pages, 9 figures; minor correction
Optimal bounds for a colorful Tverberg--Vrecica type problem
We prove the following optimal colorful Tverberg-Vrecica type transversal
theorem: For prime r and for any k+1 colored collections of points C^l of size
|C^l|=(r-1)(d-k+1)+1 in R^d, where each C^l is a union of subsets (color
classes) C_i^l of size smaller than r, l=0,...,k, there are partition of the
collections C^l into colorful sets F_1^l,...,F_r^l such that there is a k-plane
that meets all the convex hulls conv(F_j^l), under the assumption that r(d-k)
is even or k=0.
Along the proof we obtain three results of independent interest: We present
two alternative proofs for the special case k=0 (our optimal colored Tverberg
theorem (2009)), calculate the cohomological index for joins of chessboard
complexes, and establish a new Borsuk-Ulam type theorem for (Z_p)^m-equivariant
bundles that generalizes results of Volovikov (1996) and Zivaljevic (1999).Comment: Substantially revised version: new notation, improved results,
additional references; 12 pages, 2 figure
Deterministic Sampling and Range Counting in Geometric Data Streams
We present memory-efficient deterministic algorithms for constructing
epsilon-nets and epsilon-approximations of streams of geometric data. Unlike
probabilistic approaches, these deterministic samples provide guaranteed bounds
on their approximation factors. We show how our deterministic samples can be
used to answer approximate online iceberg geometric queries on data streams. We
use these techniques to approximate several robust statistics of geometric data
streams, including Tukey depth, simplicial depth, regression depth, the
Thiel-Sen estimator, and the least median of squares. Our algorithms use only a
polylogarithmic amount of memory, provided the desired approximation factors
are inverse-polylogarithmic. We also include a lower bound for non-iceberg
geometric queries.Comment: 12 pages, 1 figur
Violator Spaces: Structure and Algorithms
Sharir and Welzl introduced an abstract framework for optimization problems,
called LP-type problems or also generalized linear programming problems, which
proved useful in algorithm design. We define a new, and as we believe, simpler
and more natural framework: violator spaces, which constitute a proper
generalization of LP-type problems. We show that Clarkson's randomized
algorithms for low-dimensional linear programming work in the context of
violator spaces. For example, in this way we obtain the fastest known algorithm
for the P-matrix generalized linear complementarity problem with a constant
number of blocks. We also give two new characterizations of LP-type problems:
they are equivalent to acyclic violator spaces, as well as to concrete LP-type
problems (informally, the constraints in a concrete LP-type problem are subsets
of a linearly ordered ground set, and the value of a set of constraints is the
minimum of its intersection).Comment: 28 pages, 5 figures, extended abstract was presented at ESA 2006;
author spelling fixe
Quantum Algorithms for Matrix Products over Semirings
In this paper we construct quantum algorithms for matrix products over
several algebraic structures called semirings, including the (max,min)-matrix
product, the distance matrix product and the Boolean matrix product. In
particular, we obtain the following results.
We construct a quantum algorithm computing the product of two n x n matrices
over the (max,min) semiring with time complexity O(n^{2.473}). In comparison,
the best known classical algorithm for the same problem, by Duan and Pettie,
has complexity O(n^{2.687}). As an application, we obtain a O(n^{2.473})-time
quantum algorithm for computing the all-pairs bottleneck paths of a graph with
n vertices, while classically the best upper bound for this task is
O(n^{2.687}), again by Duan and Pettie.
We construct a quantum algorithm computing the L most significant bits of
each entry of the distance product of two n x n matrices in time O(2^{0.64L}
n^{2.46}). In comparison, prior to the present work, the best known classical
algorithm for the same problem, by Vassilevska and Williams and Yuster, had
complexity O(2^{L}n^{2.69}). Our techniques lead to further improvements for
classical algorithms as well, reducing the classical complexity to
O(2^{0.96L}n^{2.69}), which gives a sublinear dependency on 2^L.
The above two algorithms are the first quantum algorithms that perform better
than the -time straightforward quantum algorithm based on
quantum search for matrix multiplication over these semirings. We also consider
the Boolean semiring, and construct a quantum algorithm computing the product
of two n x n Boolean matrices that outperforms the best known classical
algorithms for sparse matrices. For instance, if the input matrices have
O(n^{1.686...}) non-zero entries, then our algorithm has time complexity
O(n^{2.277}), while the best classical algorithm has complexity O(n^{2.373}).Comment: 19 page
Schrijver graphs and projective quadrangulations
In a recent paper [J. Combin. Theory Ser. B}, 113 (2015), pp. 1-17], the
authors have extended the concept of quadrangulation of a surface to higher
dimension, and showed that every quadrangulation of the -dimensional
projective space is at least -chromatic, unless it is bipartite.
They conjectured that for any integers and , the
Schrijver graph contains a spanning subgraph which is a
quadrangulation of . The purpose of this paper is to prove the
conjecture
An efficient indexing scheme for multi-dimensional moving objects
We consider the problem of indexing a set of objects moving in d-dimensional space along linear trajectories. A simple disk-based indexing scheme is proposed to efficiently answer queries of the form: report all objects that will pass between two given points within a specified time interval. Our scheme is based on mapping the objects to a dual space, where queries about moving objects translate into polyhedral queries concerning their speeds and initial locations. We then present a simple method for answering such polyhedral queries, based on partitioning the space into disjoint regions and using a B-tree to index the points in each region. By appropriately selecting the boundaries of each region, we can guarantee an average search time that almost matches a known lower bound for the problem. Specifically, for a fixed d, if the coordinates of a given set of N points are statistically independent, the proposed technique answers polyhedral queries, on the average, in O((N/B)1-1/d.(logB N)1/d + K/B) I/O\u27s using O(N/B) space, where B is the block size, and K is the number of reported points. Our approach is novel in that, while it provides a theoretical upper bound on the average query time, it avoids the use of complicated data structures, making it an effective candidate for practical applications. © Springer-Verlag Berlin Heidelberg 2003
- …