2,241 research outputs found

    Ice core records of atmospheric CO2 around the last three glacial terminations

    Get PDF
    Air trapped in bubbles in polar ice cores constitutes an archive for the reconstruction of the global carbon cycle and the relation between greenhouse gases and climate in the past. High-resolution records from Antarctic ice cores show that carbon dioxide concentrations increased by 80 to 100 parts per million by volume 600 ± 400 years after the warming of the last three deglaciations. Despite strongly decreasing temperatures, high carbon dioxide concentrations can be sustained for thousands of years during glaciations; the size of this phase lag is probably connected to the duration of the preceding warm period, which controls the change in land ice coverage and the buildup of the terrestrial biosphere.</jats:p

    HIV-associated progressive multifocal leukoencephalopathy. Current perspectives

    Get PDF
    Progressive multifocal leukoencephalopathy (PML) is a demyelinating disease of the central nervous system, caused by the polyomavirus JC and occurring almost exclusively in the context of severe immune depression. AIDS represents the most common predisposing condition for PML development. Antiretroviral treatment has reduced PML incidence in HIV-infected subjects, but the disease remains a severe and life-threatening complication of AIDS, considering thus far the lack of an effective anti-JC virus (JCV) direct-acting antiviral drug. In the last decade, the use of monoclonal antibodies for treating immune-based diseases evidenced new predisposing conditions for PML development, promoting a renewed interest in PML pathogenesis. In this article, we review the current knowledge on JCV epidemiology and AIDS-associated PML incidence, JCV viral cycle, pathogenesis, and the interplay with HIV infection. We give an updated overview of diagnostic and prognostic tools available for PML diagnosis and describe past and current therapeutic approaches, including new strategies for PML cure

    In-vitro evaluation of different antimicrobial combinations with and without colistin against carbapenem-resistant acinetobacter baumannii

    Get PDF
    Carbapenem-resistant Acinetobacter baumannii (CR-Ab) infections are associated with high morbidity and mortality. The aim of the study was to evaluate the in-vitro activity of different antimicrobial combinations (with and without colistin, COL) against clinical isolates of CR-Ab collected from patients with CR-Ab infection, including unconventional combinations such as COL + VANcomycin (VAN) and COL + rifampin (RIF). CR-Ab strains were collected from hospitalized patients at Sapienza University of Rome. Antimicrobial susceptibility patterns were determined throughout MIC50/90s whereas the synergistic activity was evaluated by qualitative (i.e., checkerboard) and quantitative (i.e., killing studies) methods. All the strains were found oxacillinase (OXA) producers and tigecycline (TIG) sensitive whereas 2 strains were resistant to COL. Application of the checkerboard method indicated complete synergism in COL combinations at different extension: 21.4%, 57.1%, 42.8%, 35.7% for COL + meropenem (MEM), COL + RIF, COL + VAN and COL + TIG, respectively, with the non-conventional combinations COL + VAN and COL + RIF exhibiting the highest rate of synergism. Regarding COL-free combination, complete synergism was observed in 35.7% of the strains for MEM + TIG. Killing studies showed that the combinations COL + MEM, COL + TIG and MEM + TIG were bactericidal and synergistic against both colistin-sensitive and low colistin-resistant strains whereas only the combinations COL + VAN and COL + RIF showed an early and durable bactericidal activity against all the tested strains, with absence of growth at 24 h. This study demonstrated that COL-based combinations lead to a high level of synergic and bactericidal activity, especially COL + VAN and COL + RIF, even in the presence of high level of COL resistance

    Reducing the operational cost of cloud data centers through renewable energy

    Get PDF
    The success of cloud computing services has led to big computing infrastructures that are complex to manage and very costly to operate. In particular, power supply dominates the operational costs of big infrastructures, and several solutions have to be put in place to alleviate these operational costs and make the whole infrastructure more sustainable. In this paper, we investigate the case of a complex infrastructure composed of data centers (DCs) located in different geographical areas in which renewable energy generators are installed, co-located with the data centers, to reduce the amount of energy that must be purchased by the power grid. Since renewable energy generators are intermittent, the load management strategies of the infrastructure have to be adapted to the intermittent nature of the sources. In particular, we consider EcoMultiCloud, a load management strategy already proposed in the literature for multi-objective load management strategies, and we adapt it to the presence of renewable energy sources. Hence, cost reduction is achieved in the load allocation process, when virtual machines (VMs) are assigned to a data center of the considered infrastructure, by considering both energy cost variations and the presence of renewable energy production. Performance is analyzed for a specific infrastructure composed of four data centers. Results show that, despite being intermittent and highly variable, renewable energy can be effectively exploited in geographical data centers when a smart load allocation strategy is implemented. In addition, the results confirm that EcoMultiCloud is very flexible and is suited to the considered scenario

    Load Management with Predictions of Solar Energy Production for Cloud Data Centers

    Get PDF
    Power supply of big infrastructures is today a tremendous operational cost for providers and the expected growth of Internet traffic and services will lead to a further expansion of the computing and networking infrastructures and this, in its turn, raises also concerns in terms of sustainability. In this context, renewable energy generators can help to both reduce costs and alleviate the concerns of sustainability of big infrastructures. In this paper, we consider the case of Data Centers (DCs) composed of a few sites located in different geographical positions and powered with solar energy. Due to the intermittent nature of solar energy, different time zones and price of electricity in different locations, load management strategies are fundamental. We consider predictions of the solar energy production performed through Artificial Neural Networks and we assess the impact of predictions on load management decisions and, ultimately, on the DC performance

    A general estimator of the primary cosmic ray energy with the ARGO-YBJ experiment

    Get PDF
    The determination of the primary cosmic ray all-particle spectrum with ground-based air shower experiments usually depends on the assumed elemental composition and hadronic interaction model. Here we show that an energy estimator independent of the primary mass composition can be defined by means of shower parameters measured in the core region, as carried out in the ARGO-YBJ experiment. The energy resolution is <10% above 100 TeV and gets better with energy increasing. Being insensitive to the number of muons, this energy determination has only a weak dependence on the hadronic interaction model. The features of this energy estimator have been validated by extensive MC simulations and used in the analysis of the ARGO-YBJ data

    General and Intensive Care Outcomes for Hospitalized Patients With Solid Organ Transplants With COVID-19

    Get PDF
    © The Author(s) 2020. Purpose: COVID-19 has been associated with a dysregulated inflammatory response. Patients who have received solid-organ transplants are more susceptible to infections in general due to the use of immunosuppressants. We investigated factors associated with mechanical ventilation and outcomes in solid-organ transplant recipients with COVID-19. Materials and Methods: We conducted a retrospective cohort study of all solid-organ transplant recipients admitted with a diagnosis of COVID-19 in our 23-hospital health system over a 1-month period. Descriptive statistics were used to describe hospital course and laboratory results and bivariate comparisons were performed on variables to determine differences. Results: Twenty-two patients with solid-organ transplants and COVID-19 were identified. Eight patients were admitted to the ICU, of which 7 were intubated. Admission values of CRP (p = 0.045) and N/L ratio (p = 0.047) were associated with the need for mechanical ventilation. Seven patients (32%) died during admission, including 86% (n = 6) of patients who received mechanical ventilation. Conclusions: In solid-organ transplant recipients with COVID-19, initial CRP and N/L ratio were associated with need for mechanical ventilation

    Persistent systemic microbial translocation, inflammation, and intestinal damage during Clostridioides difficile infection

    Get PDF
    Background. Clostridioides difficile infection (CDI) might be complicated by the development of nosocomial bloodstream infection (n-BSI). Based on the hypothesis that alteration of the normal gut integrity is present during CDI, we evaluated markers of microbial translocation, inflammation, and intestinal damage in patients with CDI. Methods. Patients with documented CDI were enrolled in the study. For each subject, plasma samples were collected at T0 and T1 (before and after CDI therapy, respectively), and the following markers were evaluated: lipopolysaccharide-binding protein (LPB), EndoCab IgM, interleukin-6, intestinal fatty acid binding protein (I-FABP). Samples from nonhospitalized healthy controls were also included. The study population was divided into BSI+/BSI- and fecal microbiota transplantation (FMT) +/FMT- groups, according to the development of n-BSI and the receipt of FMT, respectively. Results. Overall, 45 subjects were included; 8 (17.7%) developed primary n-BSI. Markers of microbial translocation and intestinal damage significantly decreased between T0 and T1, however, without reaching values similar to controls (P &lt; .0001). Compared with BSI-, a persistent high level of microbial translocation in the BSI+ group was observed. In the FMT+ group, markers of microbial translocation and inflammation at T1 tended to reach control values. Conclusions. CDI is associated with high levels of microbial translocation, inflammation, and intestinal damage, which are still present at clinical resolution of CDI. The role of residual mucosal perturbation and persistence of intestinal cell damage in the development of n-BSI following CDI, as well as the possible effect of FMT in the restoration of mucosal integrity, should be further investigated

    Pseudo-outbreak of Mycobacterium gordonae in a teaching hospital: importance of strictly following decontamination procedures and emerging issues concerning sterilization

    Get PDF
    Aim of this study was to investigate a pseudo-outbreak of Mycobacterium gordonae analyzing isolates detected from clinical and environmental samples. Mycobacterium gordonae was detected in 7 out of 497 broncho-alveolar lavage (BAL) samples after bronchoscopy procedure in patients admitted to a teaching hospital between January and April 2013. During this pseudo-outbreak clinical, epidemiological, environmental and molecular investigations were performed. None of the patients met the criteria for non-tuberculous mycobacterial (NTM) lung disease and were treated for M. gordonae lung disease. Environmental investigation revealed M. gordonae in 3 samples: in tap water and in the water supply channel of the washer disinfector. All the isolates were subjected to genotyping by pulsed-field gel electrophoresis (PFGE). The PFGE revealed that only patients' isolates presented the same band pattern but no correlation with the environmental strain was detected. Surveillance of the outbreak and the strict adherence to the reprocessing procedure and its supplies resulted afterwards in no detection of M. gordonae in clinical respiratory samples. Clinical surveillance of patients was crucial to establish the start of NTM treatment. Regular screening of tap water and endoscopic equipment should be adopted to compare the clinical strains with the environmental ones when an outbreak occurs
    • …
    corecore