50 research outputs found

    Genome-Wide Analysis of Effectors of Peroxisome Biogenesis

    Get PDF
    Peroxisomes are intracellular organelles that house a number of diverse metabolic processes, notably those required for β-oxidation of fatty acids. Peroxisomes biogenesis can be induced by the presence of peroxisome proliferators, including fatty acids, which activate complex cellular programs that underlie the induction process. Here, we used multi-parameter quantitative phenotype analyses of an arrayed mutant collection of yeast cells induced to proliferate peroxisomes, to establish a comprehensive inventory of genes required for peroxisome induction and function. The assays employed include growth in the presence of fatty acids, and confocal imaging and flow cytometry through the induction process. In addition to the classical phenotypes associated with loss of peroxisomal functions, these studies identified 169 genes required for robust signaling, transcription, normal peroxisomal development and morphologies, and transmission of peroxisomes to daughter cells. These gene products are localized throughout the cell, and many have indirect connections to peroxisome function. By integration with extant data sets, we present a total of 211 genes linked to peroxisome biogenesis and highlight the complex networks through which information flows during peroxisome biogenesis and function

    A Single Peroxisomal Targeting Signal Mediates Matrix Protein Import in Diatoms

    Get PDF
    Peroxisomes are single membrane bound compartments. They are thought to be present in almost all eukaryotic cells, although the bulk of our knowledge about peroxisomes has been generated from only a handful of model organisms. Peroxisomal matrix proteins are synthesized cytosolically and posttranslationally imported into the peroxisomal matrix. The import is generally thought to be mediated by two different targeting signals. These are respectively recognized by the two import receptor proteins Pex5 and Pex7, which facilitate transport across the peroxisomal membrane. Here, we show the first in vivo localization studies of peroxisomes in a representative organism of the ecologically relevant group of diatoms using fluorescence and transmission electron microscopy. By expression of various homologous and heterologous fusion proteins we demonstrate that targeting of Phaeodactylum tricornutum peroxisomal matrix proteins is mediated only by PTS1 targeting signals, also for proteins that are in other systems imported via a PTS2 mode of action. Additional in silico analyses suggest this surprising finding may also apply to further diatoms. Our data suggest that loss of the PTS2 peroxisomal import signal is not reserved to Caenorhabditis elegans as a single exception, but has also occurred in evolutionary divergent organisms. Obviously, targeting switching from PTS2 to PTS1 across different major eukaryotic groups might have occurred for different reasons. Thus, our findings question the widespread assumption that import of peroxisomal matrix proteins is generally mediated by two different targeting signals. Our results implicate that there apparently must have been an event causing the loss of one targeting signal even in the group of diatoms. Different possibilities are discussed that indicate multiple reasons for the detected targeting switching from PTS2 to PTS1

    PAS7 encodes a novel yeast member of the WD-40 protein family essential for import of 3-oxoacyl-CoA thiolase, a PTS2-containing protein, into peroxisomes.

    Get PDF
    To identify components of the peroxisomal import pathway in yeast, we have isolated pas mutants affected in peroxisome biogenesis. Two mutants assigned to complementation group 7 define a new gene, PAS7, whose product is necessary for import of thiolase, a PTS2-containing protein, but not for that of SKL (PTS1)-containing proteins, into peroxisomes. We have cloned PAS7 by complementation of the oleic acid non-utilizing phenotype of the pas7-1 strain. The DNA sequence predicts a 42.3 kDa polypeptide of 375 amino acids encoding a novel member of the beta-transducin related (WD-40) protein family. A Myc epitope-tagged Pas7p, expressed under the control of the CUP1 promotor, was functionally active. Subcellular localization studies revealed that in the presence of thiolase this epitope-tagged Pas7p in part associates with peroxisomes. However, in a thiolase-deficient mutant, Pas7p was entirely found in the cytoplasm. We suggest that Pas7p mediates the binding of thiolase to these organelles

    The import receptor for the peroxisomal targeting signal 2 (PTS2) in Saccharomyces cerevisiae is encoded by the PAS7 gene.

    Get PDF
    The import of peroxisomal matrix proteins is dependent on one of two targeting signals, PTS1 and PTS2. We demonstrate in vivo that not only the import of thiolase but also that of a chimeric protein consisting of the thiolase PTS2 (amino acids 1-18) fused to the bacterial protein beta-lactamase is Pas7p dependent. In addition, using a combination of several independent approaches (two-hybrid system, co-immunoprecipitation, affinity chromatography and high copy suppression), we show that Pas7p specifically interacts with thiolase in vivo and in vitro. For this interaction, the N-terminal PTS2 of thiolase is both necessary and sufficient. The specific binding of Pas7p to thiolase does not require peroxisomes. Pas7p recognizes the PTS2 of thiolase even when this otherwise N-terminal targeting signal is fused to the C-terminus of other proteins, i.e. the activation domain of Gal4p or GST. These results demonstrate that Pas7p is the targeting signal-specific receptor of thiolase in Saccharomyces cerevisiae and, moreover, are consistent with the view that Pas7p is the general receptor of the PTS2. Our observation that Pas7p also interacts with the human peroxisomal thiolase suggests that in the human peroxisomal disorders characterized by an import defect for PTS2 proteins (classical rhizomelic chondrodysplasia punctata), a functional homologue of Pas7p may be impaired

    Erp1p and Erp2p, Partners for Emp24p and Erv25p in a Yeast p24 Complex

    No full text
    Six new members of the yeast p24 family have been identified and characterized. These six genes, named ERP1–ERP6 (for Emp24p- and Erv25p-related proteins) are not essential, but deletion of ERP1 or ERP2 causes defects in the transport of Gas1p, in the retention of BiP, and deletion of ERP1 results in the suppression of a temperature-sensitive mutation in SEC13 encoding a COPII vesicle coat protein. These phenotypes are similar to those caused by deletion of EMP24 or ERV25, two previously identified genes that encode related p24 proteins. Genetic and biochemical studies demonstrate that Erp1p and Erp2p function in a heteromeric complex with Emp24p and Erv25p

    Crystal structure of peroxisomal targeting signal-2 bound to its receptor complex Pex7p–Pex21p

    Get PDF
    ペルオキシソーム病RCDP-1の分子機構の解明.京都大学プレスリリース.2013-07-01.Appropriate targeting of matrix proteins to peroxisomes is mainly directed by two types of peroxisomal targeting signals, PTS1 and PTS2. Although the basis of PTS1 recognition has been revealed by structural studies, that of PTS2 recognition remains elusive. Here we present the crystal structure of a heterotrimeric PTS2-recognition complex from Saccharomyces cerevisiae, containing Pex7p, the C-terminal region of Pex21p and the PTS2 of the peroxisomal 3-ketoacyl-CoA thiolase. Pex7p forms a β-propeller structure and provides a platform for cooperative interactions with both the amphipathic PTS2 helix and Pex21p. The C-terminal region of Pex21p directly covers the hydrophobic surfaces of both Pex7p and PTS2, and the resulting hydrophobic core is the primary determinant of stable complex formation. Together with in vivo and in vitro functional assays of Pex7p and Pex21p variants, our findings reveal the molecular mechanism of PTS2 recognition
    corecore