155,201 research outputs found

    Entanglement cost and quantum channel simulation

    Get PDF
    This paper proposes a revised definition for the entanglement cost of a quantum channel N\mathcal{N}. In particular, it is defined here to be the smallest rate at which entanglement is required, in addition to free classical communication, in order to simulate nn calls to N\mathcal{N}, such that the most general discriminator cannot distinguish the nn calls to N\mathcal{N} from the simulation. The most general discriminator is one who tests the channels in a sequential manner, one after the other, and this discriminator is known as a quantum tester [Chiribella et al., Phys. Rev. Lett., 101, 060401 (2008)] or one who is implementing a quantum co-strategy [Gutoski et al., Symp. Th. Comp., 565 (2007)]. As such, the proposed revised definition of entanglement cost of a quantum channel leads to a rate that cannot be smaller than the previous notion of a channel's entanglement cost [Berta et al., IEEE Trans. Inf. Theory, 59, 6779 (2013)], in which the discriminator is limited to distinguishing parallel uses of the channel from the simulation. Under this revised notion, I prove that the entanglement cost of certain teleportation-simulable channels is equal to the entanglement cost of their underlying resource states. Then I find single-letter formulas for the entanglement cost of some fundamental channel models, including dephasing, erasure, three-dimensional Werner--Holevo channels, epolarizing channels (complements of depolarizing channels), as well as single-mode pure-loss and pure-amplifier bosonic Gaussian channels. These examples demonstrate that the resource theory of entanglement for quantum channels is not reversible. Finally, I discuss how to generalize the basic notions to arbitrary resource theories.Comment: 28 pages, 7 figure

    Sequential decoding of a general classical-quantum channel

    Get PDF
    Since a quantum measurement generally disturbs the state of a quantum system, one might think that it should not be possible for a sender and receiver to communicate reliably when the receiver performs a large number of sequential measurements to determine the message of the sender. We show here that this intuition is not true, by demonstrating that a sequential decoding strategy works well even in the most general "one-shot" regime, where we are given a single instance of a channel and wish to determine the maximal number of bits that can be communicated up to a small failure probability. This result follows by generalizing a non-commutative union bound to apply for a sequence of general measurements. We also demonstrate two ways in which a receiver can recover a state close to the original state after it has been decoded by a sequence of measurements that each succeed with high probability. The second of these methods will be useful in realizing an efficient decoder for fully quantum polar codes, should a method ever be found to realize an efficient decoder for classical-quantum polar codes.Comment: 12 pages; accepted for publication in the Proceedings of the Royal Society

    Strong and uniform convergence in the teleportation simulation of bosonic Gaussian channels

    Get PDF
    In the literature on the continuous-variable bosonic teleportation protocol due to [Braunstein and Kimble, Phys. Rev. Lett., 80(4):869, 1998], it is often loosely stated that this protocol converges to a perfect teleportation of an input state in the limit of ideal squeezing and ideal detection, but the exact form of this convergence is typically not clarified. In this paper, I explicitly clarify that the convergence is in the strong sense, and not the uniform sense, and furthermore, that the convergence occurs for any input state to the protocol, including the infinite-energy Basel states defined and discussed here. I also prove, in contrast to the above result, that the teleportation simulations of pure-loss, thermal, pure-amplifier, amplifier, and additive-noise channels converge both strongly and uniformly to the original channels, in the limit of ideal squeezing and detection for the simulations. For these channels, I give explicit uniform bounds on the accuracy of their teleportation simulations. I then extend these uniform convergence results to particular multi-mode bosonic Gaussian channels. These convergence statements have important implications for mathematical proofs that make use of the teleportation simulation of bosonic Gaussian channels, some of which have to do with bounding their non-asymptotic secret-key-agreement capacities. As a byproduct of the discussion given here, I confirm the correctness of the proof of such bounds from my joint work with Berta and Tomamichel from [Wilde, Tomamichel, Berta, IEEE Trans. Inf. Theory 63(3):1792, March 2017]. Furthermore, I show that it is not necessary to invoke the energy-constrained diamond distance in order to confirm the correctness of this proof.Comment: 19 pages, 3 figure

    Recoverability for Holevo's just-as-good fidelity

    Get PDF
    Holevo's just-as-good fidelity is a similarity measure for quantum states that has found several applications. One of its critical properties is that it obeys a data processing inequality: the measure does not decrease under the action of a quantum channel on the underlying states. In this paper, I prove a refinement of this data processing inequality that includes an additional term related to recoverability. That is, if the increase in the measure is small after the action of a partial trace, then one of the states can be nearly recovered by the Petz recovery channel, while the other state is perfectly recovered by the same channel. The refinement is given in terms of the trace distance of one of the states to its recovered version and also depends on the minimum eigenvalue of the other state. As such, the refinement is universal, in the sense that the recovery channel depends only on one of the states, and it is explicit, given by the Petz recovery channel. The appendix contains a generalization of the aforementioned result to arbitrary quantum channels.Comment: 6 pages, submission to ISIT 201

    Stochastic chaos: An analog of quantum chaos

    Get PDF
    Some intriging connections between the properties of nonlinear noise driven systems and the nonlinear dynamics of a particular set of Hamilton's equation are discussed. A large class of Fokker-Planck Equations, like the Schr\"odinger equation, can exhibit a transition in their spectral statistics as a coupling parameter is varied. This transition is connected to the transition to non-integrability in the Hamilton's equations.Comment: Uuencoded compressed postscript file, 4 pages, 3 fig

    Recoverability in quantum information theory

    Full text link
    The fact that the quantum relative entropy is non-increasing with respect to quantum physical evolutions lies at the core of many optimality theorems in quantum information theory and has applications in other areas of physics. In this work, we establish improvements of this entropy inequality in the form of physically meaningful remainder terms. One of the main results can be summarized informally as follows: if the decrease in quantum relative entropy between two quantum states after a quantum physical evolution is relatively small, then it is possible to perform a recovery operation, such that one can perfectly recover one state while approximately recovering the other. This can be interpreted as quantifying how well one can reverse a quantum physical evolution. Our proof method is elementary, relying on the method of complex interpolation, basic linear algebra, and the recently introduced Renyi generalization of a relative entropy difference. The theorem has a number of applications in quantum information theory, which have to do with providing physically meaningful improvements to many known entropy inequalities.Comment: v5: 26 pages, generalized lower bounds to apply when supp(rho) is contained in supp(sigma
    • …
    corecore