5 research outputs found

    Role of N-terminal tau domain integrity on the survival of cerebellar granule neurons

    Get PDF
    Although the role of the microtubule-binding domain of the tau protein in the modulation of microtubule assembly is widely established, other possible functions of this protein have been poorly investigated. We have analyzed the effect of adenovirally mediated expression of two fragments of the N-terminal portion - free of microtubule-binding domain - of the tau protein in cerebellar granule neurons (CGNs). We found that while the expression of the tau (1-230) fragment, as well as of full-length tau, inhibits the onset of apoptosis, the tau (1-44) fragment exerts a powerful toxic action on the same neurons. The antiapoptotic action of tau (1-230) is exerted at the level of Akt-mediated activation of the caspase cascade. On the other hand, the toxic action of the (1-44) fragment is not prevented by inhibitors of CGN apoptosis, but is fully inhibited by NMDA receptor antagonists. These findings point to a novel, physiological role of the N-terminal domain of tau, but also underlay that its possible proteolytic truncation mediated by apoptotic proteases may generate a highly toxic fragment that could contribute to neuronal death

    Tissue inhibitor of metalloproteinases-1 protects human neurons from staurosporine and HIV-1-induced apoptosis: mechanisms and relevance to HIV-1-associated dementia

    Get PDF
    HIV-1-associated dementia (HAD)-relevant proinflammatory cytokines robustly induce astrocyte tissue inhibitor of metalloproteinases-1 (TIMP-1). As TIMP-1 displays pleotropic functions, we hypothesized that TIMP-1 expression may serve as a neuroprotective response of astrocytes. Previously, we reported that chronically activated astrocytes fail to maintain elevated TIMP-1 expression, and TIMP-1 levels are lower in the brain of HAD patients; a phenomenon that may contribute to central nervous system pathogenesis. Further, the role of TIMP-1 as a neurotrophic factor is incompletely understood. In this study, we report that staurosporine (STS) and HIV-1ADA virus, both led to induction of apoptosis in cultured primary human neurons. Interestingly, cotreatment with TIMP-1 protects neurons from apoptosis and reverses neuronal morphological changes induced by these toxins. Further, the anti-apoptotic effect was not observed with TIMP-2 or -3, but was retained in a mutant of the N-terminal TIMP-1 protein with threonine-2 mutated to glycine (T2G) that is deficient in matrix metalloproteinase (MMP)-1, -2 and -3 inhibitory activity. Therefore, the mechanism is specific to TIMP-1 and partially independent of MMP-inhibition. Additionally, TIMP-1 modulates the Bcl-2 family of proteins and inhibits opening of mitochondrial permeability transition pores induced by HIV-1 or STS. Together, these findings describe a novel function, mechanism and direct role of TIMP-1 in neuroprotection, suggesting its therapeutic potential in HAD and possibly in other neurodegenerative diseases
    corecore