8 research outputs found

    A Discrete Model For Pattern Formation In Volatile Thin Films

    No full text
    We introduce a model, similar to diffusion limited aggregation (DLA), which serves as a discrete analog of the continuous dynamics of evaporation of thin liquid films. Within mean field approximation the dynamics of this model, averaged over many realizations of the growing cluster, reduces to that of the idealized evaporation model in which surface tension is neglected. However fluctuations beyond the mean field level play an important role, and we study their effect on the conserved quantities of the idealized evaporation model. Assuming the cluster to be a fractal, a heuristic approach is developed in order to explain the distinctive increase of the fractal dimension with the cluster size

    Centering and symmetry breaking in confined contracting actomyosin networks

    No full text
    Centering and decentering of cellular components is essential for internal organization of cells and their ability to perform basic cellular functions such as division and motility. How cells achieve proper localization of their organelles is still not well-understood, especially in large cells such as oocytes. Here, we study actin-based positioning mechanisms in artificial cells with persistently contracting actomyosin networks, generated by encapsulating cytoplasmic Xenopus egg extracts into cell-sized ‘water-in-oil’ droplets. We observe size-dependent localization of the contraction center, with a symmetric configuration in larger cells and a polar one in smaller cells. Centering is achieved via a hydrodynamic mechanism based on Darcy friction between the contracting network and the surrounding cytoplasm. During symmetry breaking, transient attachments to the cell boundary drive the contraction center to a polar location. The centering mechanism is cell-cycle dependent and weakens considerably during interphase. Our findings demonstrate a robust, yet tunable, mechanism for subcellular localization

    Scaling behaviour in steady-state contracting actomyosin networks

    No full text
    Contractile actomyosin network flows are crucial for many cellular processes including cell division and motility, morphogenesis and transport. How local remodelling of actin architecture tunes stress production and dissipation and regulates large-scale network flows remains poorly understood. Here, we generate contracting actomyosin networks with rapid turnover in vitro, by encapsulating cytoplasmic Xenopus egg extracts into cell-sized ‘water-in-oil’ droplets. Within minutes, the networks reach a dynamic steady-state with continuous inward flow. The networks exhibit homogeneous, density-independent contraction for a wide range of physiological conditions, implying that the myosin-generated stress driving contraction and the effective network viscosity have similar density dependence. We further find that the contraction rate is roughly proportional to the network turnover rate, but this relation breaks down in the presence of excessive crosslinking or branching. Our findings suggest that cells use diverse biochemical mechanisms to generate robust, yet tunable, actin flows by regulating two parameters: turnover rate and network geometry

    Self-organized stress patterns drive state transitions in actin cortices

    No full text
    Biological functions rely on ordered structures and intricately controlled collective dynamics. This order in living systems is typically established and sustained by continuous dissipation of energy. The emergence of collective patterns of motion is unique to nonequilibrium systems and is a manifestation of dynamic steady states. Mechanical resilience of animal cells is largely controlled by the actomyosin cortex. The cortex provides stability but is, at the same time, highly adaptable due to rapid turnover of its components. Dynamic functions involve regulated transitions between different steady states of the cortex. We find that model actomyosin cortices, constructed to maintain turnover, self-organize into distinct nonequilibrium steady states when we vary cross-link density. The feedback between actin network structure and organization of stress-generating myosin motors defines the symmetries of the dynamic steady states. A marginally cross-linked state displays divergence-free long-range flow patterns. Higher cross-link density causes structural symmetry breaking, resulting in a stationary converging flow pattern. We track the flow patterns in the model actomyosin cortices using fluorescent single-walled carbon nanotubes as novel probes. The self-organization of stress patterns we have observed in a model system can have direct implications for biological functions

    The Actomyosin Cortex of Cells: A Thin Film of Active Matter

    No full text

    Phase-Field Modeling of Individual and Collective Cell Migration

    No full text
    corecore