1,490 research outputs found

    Design and implementation of the Quarc network on-chip

    Get PDF
    Networks-on-Chip (NoC) have emerged as alternative to buses to provide a packet-switched communication medium for modular development of large Systems-on-Chip. However, to successfully replace its predecessor, the NoC has to be able to efficiently exchange all types of traffic including collective communications. The latter is especially important for e.g. cache updates in multicore systems. The Quarc NoC architecture has been introduced as a Networks-on-Chip which is highly efficient in exchanging all types of traffic including broadcast and multicast. In this paper we present the hardware implementation of the switch architecture and the network adapter (transceiver) of the Quarc NoC. Moreover, the paper presents an analysis and comparison of the cost and performance between the Quarc and the Spidergon NoCs implemented in Verilog targeting the Xilinx Virtex FPGA family. We demonstrate a dramatic improvement in performance over the Spidergon especially for broadcast traffic, at no additional hardware cost

    Melting behavior and different bound states in three-stranded DNA models

    Full text link
    Thermal denaturation of DNA is often studied with coarse-grained models in which native sequential base pairing is mimicked by the existence of attractive interactions only between monomers at the same position along strands (Poland and Scheraga models). Within this framework, the existence of a three strand DNA bound state in conditions where a duplex DNA would be in the denaturated state was recently predicted from a study of three directed polymer models on simplified hierarchical lattices (d>2d>2) and in 1+11+1 dimensions. Such phenomenon which is similar to the Efimov effect in nuclear physics was named Efimov-DNA. In this paper we study the melting of the three-stranded DNA on a Sierpinski gasket of dimensions d<2d<2 by assigning extra weight factors to fork openings and closings, to induce a two-strand DNA melting. In such a context we can find again the existence of the Efimov-DNA-like state but quite surprisingly we discover also the presence of a different phase, to be called a mixed state, where the strands are pair-wise bound but without three chain contacts. Whereas the Efimov DNA turns out to be a crossover near melting, the mixed phase is a thermodynamic phase.Comment: corrected file uploade

    Parton distribution functions of proton in a light-front quark-diquark model

    Full text link
    We present the parton distribution functions (PDFs) for un- polarised, longitudinally polarized and transversely polarized quarks in a proton using the light-front quark diquark model. We also present the scale evolution of PDFs and calculate axial charge and tecsor charge for uu and dd quarks at a scale of experimental findings.Comment: XXII DAE-BRNS High Energy Physics Symposium, December 12-16, 2016, University of Delhi, India; 4 pages, 1 figur

    Dynamic phase transition in the conversion of B-DNA to Z-DNA

    Full text link
    The long time dynamics of the conformational transition from B-DNA to Z-DNA is shown to undergo a dynamic phase transition. We obtained the dynamic phase diagram for the stability of the front separating B and Z. The instability in this front results in two split fronts moving with different velocities. Hence, depending on the system parameters a denatured state may develop dynamically eventhough it is thermodynamically forbidden. This resolves the current controversies on the transition mechanism of the B-DNA to Z-DNA.Comment: 5 pages, 4 figures. New version with correction of typos, new references, minor modifications in Fig 2, 3. To appear in EP

    TYPE II DNA: when the interfacial energy becomes negative

    Full text link
    An important step in transcription of a DNA base sequence to a protein is the initiation from the exact starting point, called promoter region. We propose a physical mechanism for identification of the promoter region, which relies on a new classification of DNAs into two types, Type-I and Type-II, like superconductors, depending on the sign of the energy of the interface separating the zipped and the unzipped phases. This is determined by the energies of helical ordering and stretching over two independent length scales. The negative interfacial energy in Type II DNA leads to domains of helically ordered state separated by defect regions, or blobs, enclosed by the interfaces. The defect blobs, pinned by non-coding promoter regions, would be physically distinct from all other types of bubbles. We also show that the order of the melting transition under a force is different for Type I and Type II.Comment: 4 pages, 2 figures, Eq.(4) corrected in 4th versio

    Nonequilibrium tricriticality in one dimension

    Full text link
    We show the existence of a nonequilibrium tricritical point induced by a repulsive interaction in one dimensional asymmetric exclusion process. The tricritical point is associated with the particle-hole symmetry breaking introduced by the repulsion. The phase diagram and the crossover in the neighbourhood of the tricritical point for the shock formation at one of the boundaries are determined.Comment: 6 pages; 4 figure

    Scanning gate microscopy of nonretracing electron-hole trajectories in a normal-superconductor junction

    Full text link
    We theoretically study scanning gate microscopy (SGM) of electron and hole trajectories in a quantum point contact (QPC) embedded in a normal-superconductor (NS) junction. At zero voltage bias, the electrons and holes transported through the QPC form angular lobes and are subject to self-interference, which marks the SGM conductance maps with interference fringes analogously as in normal systems. We predict that for an NS junction at non-zero bias a beating pattern is to occur in the conductance probed with the use of the SGM technique owing to a mismatch of the Fermi wavevectors of electrons and holes. Moreover, the SGM technique exposes a pronounced disturbance in the angular conductance pattern, as the retroreflected hole does not retrace the electron path due to wavevector difference
    • …
    corecore