1,259 research outputs found

    Comparisons and Combinations of Reactor and Long-Baseline Neutrino Oscillation Measurements

    Full text link
    We investigate how the data from various future neutrino oscillation experiments will constrain the physics parameters for a three active neutrino mixing model. The investigations properly account for the degeneracies and ambiguities associated with the phenomenology as well as estimates of experimental measurement errors. Combinations of various reactor measurements with the expected J-PARC (T2K) and NuMI offaxis (Nova) data, both with and without the increased flux associated with proton driver upgrades, are considered. The studies show how combinations of reactor and offaxis data can resolve degeneracies (e.g. the theta23 degeneracy) and give more precise information on the oscillation parameters. A primary purpose of this investigation is to establish the parameter space regions where CP violation can be discovered and where the mass hierarchy can be determined. It is found that such measurements, even with the augmented flux from proton driver upgrades, demand sin^2 (2 theta13) be fairly large and in the range where it is measurable by reactor experiments.Comment: 25 pages, 13 figures, fixed typos; 25 pages, 13 figures, updated content, references; previous 22 pages, 12 figures, added references and fixed reference display proble

    Large-Scale Schr\"odinger-Cat States and Majorana Bound States in Coupled Circuit-QED Systems

    Full text link
    We have studied the low-lying excitations of a chain of coupled circuit-QED systems, and report several intriguing properties of its two nearly degenerate ground states. The ground states are Schr\"odinger cat states at a truly large scale, involving maximal entanglement between the resonator and the qubit, and are mathematically equivalent to Majorana bound states. With a suitable design of physical qubits, they are protected against local fluctuations and constitute a non-local qubit. Further, they can be probed and manipulated coherently by attaching an empty resonator to one end of the circuit-QED chain.Comment: 5 pages; 2 figures; incorrect references corrected; typos correcte

    Variational study of a two-level system coupled to a harmonic oscillator in a ultrastrong coupling regime

    Full text link
    The nonclassical behaviors of a two-level system coupled to a harmonic oscillator is investigated in the ultrastrong coupling regime. We revisit the variational solution of the ground state and find that the existing solution do not account accurately for nonclassical effects such squeezing. We suggest a new trial wave function and demonstrate that it has an excellent accuracy on the quantum correlation effects as well as on energy.Comment: 4 pages; 3 figures; to appear in Phys. Rev.

    Spatiotemporal Stochastic Resonance in Fully Frustrated Josephson Ladders

    Full text link
    We consider a Josephson-junction ladder in an external magnetic field with half flux quantum per plaquette. When driven by external currents, periodic in time and staggered in space, such a fully frustrated system is found to display spatiotemporal stochastic resonance under the influence of thermal noise. Such resonance behavior is investigated both numerically and analytically, which reveals significant effects of anisotropy and yields rich physics.Comment: 8 pages in two columns, 8 figures, to appear in Phys. Rev.

    Decoherence Driven Quantum Transport

    Full text link
    We propose a new mechanism to generate a dc current of particles at zero bias based on a noble interplay between coherence and decoherence. We show that a dc current arises if the transport process in one direction is maintained coherent while the process in the opposite direction is incoherent. We provide possible implementations of the idea using an atomic Michelson and an atomic Aharonov-Bohm interferometer.Comment: 4 pages, 3 figure
    • …
    corecore