229 research outputs found

    Dynamics of quasi-one-dimensional bright and vortex solitons of a dipolar Bose-Einstein condensate with repulsive atomic interaction

    Full text link
    By numerical and variational analysis of the three-dimensional Gross-Pitaevskii equation we study the formation and dynamics of bright and vortex-bright solitons in a cigar-shaped dipolar Bose-Einstein condensate for large repulsive atomic interactions. Phase diagram showing the region of stability of the solitons is obtained. We also study the dynamics of breathing oscillation of the solitons as well as the collision dynamics of two solitons at large velocities. Two solitons placed side-by-side at rest coalesce to form a stable bound soliton molecule due to dipolar attraction.Comment: To obtain the included video clips S1, S2, S3 and S4, please download sourc

    Matter wave switching in Bose-Einstein condensates via intensity redistribution soliton interactions

    Get PDF
    Using time dependent nonlinear (s-wave scattering length) coupling between the components of a weakly interacting two component Bose-Einstein condensate (BEC), we show the possibility of matter wave switching (fraction of atoms transfer) between the components via shape changing/intensity redistribution (matter redistribution) soliton interactions. We investigate the exact bright-bright N-soliton solution of an effective one-dimensional (1D) two component BEC by suitably tailoring the trap potential, atomic scattering length and atom gain or loss. In particular, we show that the effective 1D coupled Gross-Pitaevskii (GP) equations with time dependent parameters can be transformed into the well known completely integrable Manakov model described by coupled nonlinear Schr\"odinger (CNLS) equations by effecting a change of variables of the coordinates and the wave functions under certain conditions related to the time dependent parameters. We obtain the one-soliton solution and demonstrate the shape changing/matter redistribution interactions of two and three soliton solutions for the time independent expulsive harmonic trap potential, periodically modulated harmonic trap potential and kink-like modulated harmonic trap potential. The standard elastic collision of solitons occur only for a specific choice of soliton parameters.Comment: 11 pages, 14 figures, 1 tabl

    Manifestation of strange nonchaotic attractors in extended systems: A study through out-of-time-ordered correlators

    Full text link
    We study the spatial spread of out-of-time-ordered correlators (OTOCs) in coupled map lattices (CMLs) of quasiperiodically forced nonlinear maps. We use instantaneous speed (IS) and finite-time Lyapunov exponents (FTLEs) to investigate the role of strange non-chaotic attractors (SNAs) on the spatial spread of the OTOC. We find that these CMLs exhibit a characteristic on and off type of spread of the OTOC for SNA. Further, we provide a broad spectrum of the various dynamical regimes in a two-parameter phase diagram using IS and FTLEs. We substantiate our results by confirming the presence of SNA using established tools and measures, namely the distribution of finite-time Lyapunov exponents, phase sensitivity, spectrum of partial Fourier sums, and 0−10-1 test.Comment: 12 pages, 16 figures, 2 table

    Comment on ``Intermittent Synchronization in a Pair of Coupled Chaotic Pendula"

    Get PDF
    The main aim of this comment is to emphasize that the conditional Lyapunov exponents play an important role in distinguishing between intermittent and persistent synchronization, when the analytic criteria for asymptotic stability are not uniformly obeyed.Comment: 2 pages, RevTeX 4, 1 EPS figur

    Localization of a dipolar Bose-Einstein condensate in a bichromatic optical lattice

    Full text link
    By numerical simulation and variational analysis of the Gross-Pitaevskii equation we study the localization, with an exponential tail, of a dipolar Bose-Einstein condensate (DBEC) of 52^{52}Cr atoms in a three-dimensional bichromatic optical-lattice (OL) generated by two monochromatic OL of incommensurate wavelengths along three orthogonal directions. For a fixed dipole-dipole interaction, a localized state of a small number of atoms (∼1000\sim 1000) could be obtained when the short-range interaction is not too attractive or not too repulsive. A phase diagram showing the region of stability of a DBEC with short-range interaction and dipole-dipole interaction is given
    • …
    corecore