143 research outputs found

    Surface Tension at Finite Tempearture in the MIT Bag Model

    Full text link
    At T=0 T = 0 the surface tension σ1/3 \sigma ^{1/3} in the MIT bag model for a single hadron is known to be negligible as compared to the bag pressure B1/4 B^{1/4}. We show that at finite temperature it has a substantial value of 50 - 70 MeV which also differ from hadron to hadron. We also find that the dynamics of the Quark-Gluon Plasma is such that the creation of hybrids (ssˉg)(s\bar{s}g) with massive quarks will predominate over the creation of (ssˉ) (s\bar{s}) mesons.Comment: Substantial changes in the revised version and a new author included, 13 pages in Latex and one figur

    Does the quark-gluon plasma contain stable hadronic bubbles?

    Get PDF
    We calculate the thermodynamic potential of bubbles of hadrons embedded in quark-gluon plasma, and of droplets of quark-gluon plasma embedded in hadron phase. This is a generalization of our previous results to the case of non-zero chemical potentials. As in the zero chemical potential case, we find that a quark-gluon plasma in thermodynamic equilibrium may contain stable bubbles of hadrons of radius R1R \simeq 1 fm. The calculations are performed within the MIT Bag model, using an improved multiple reflection expansion. The results are of relevance for neutron star phenomenology and for ultrarelativistic heavy ion collisions.Comment: 12 pages including 8 figures. To appear in Phys. Rev.

    Measurement of quasi-elastic 12C(p,2p) scattering at high momentum transfer

    Full text link
    We measured the high-momentum quasi-elastic 12C(p,2p) reaction (at center of mass angle near 90 degrees) for 6 and 7.5 GeV/c incident protons. The three-momentum components of both final state protons were measured and the missing energy and momentum of the target proton in the nucleus were determined. The validity of the quasi-elastic picture was verified up to Fermi momenta of about 450 MeV/c, where it might be questionable. Transverse and longitudinal Fermi momentum distributions of the target proton were measured and compared to independent particle models which do not reproduce the large momentum tails. We also observed that the transverse Fermi distribution gets wider as the longitudinal component increases in the beam direction, in contrast to a simple Fermi gas model.Comment: 4 pages including 3 figure

    Massless fermions in a bag at finite density and temperature

    Get PDF
    We introduce the chemical potential in a system of massless fermions in a bag by impossing boundary conditions in the Euclidean time direction. We express the fermionic mean number in terms of a functional trace involving the Green's function of the boundary value problem, which we study analytically. Numerical evaluations are made, and an application to a simple hadron model is discussed.Comment: 14 pages, 3 figures, RevTe

    Color singlet suppression of quark-gluon plasma formation

    Get PDF
    The rate of quark-gluon plasma droplet nucleation in superheated hadronic matter is calculated within the MIT bag model. The requirements of color singletness and (to less extent) fixed momentum suppress the nucleation rate by many orders of magnitude, making thermal nucleation of quark-gluon plasma droplets unlikely in ultrarelativistic heavy-ion collisions if the transition is first order and reasonably described by the bag model.Comment: 9 pages, 3 ps figures. To appear in PhysRevC (April 1996
    corecore