110 research outputs found
Wheat: Its water use, production and disease detection and prediction
The author has identified the following significant results. Discussed in this report are: (1) the effects of wheat disease on water use and yield; and (2) the use of ERTS-1 imagery in the evaluation of wheat growth and in the detection of disease severity. Leaf area index was linearly correlated with ratios MSS4:MSS5 and MSS5:MSS6. In an area of severe wheat streak mosaic virus infected fields, correlations of ERTS-1 digital counts with wheat yields and disease severity levels were significant at the 5% level for MSS bands 4 and 5 and band ratios 4/6 and 4/7. Data collection platforms were used to gather meteorological data for the early prediction of rust severity and economic loss
Diffusion in low-dimensional lipid membranes
The diffusion behavior of biological components in cellular membranes is vital to the function of cells. By collapsing the complexity of planar 2D membranes down to one dimension, fundamental investigations of bimolecular behavior become possible in one dimension. Here we develop lipid nanolithography methods to produce membranes, under fluid, with widths as low as 6 nm but extending to microns in length. We find reduced lipid mobility, as the width is reduced below 50 nm, suggesting different lipid packing in the vicinity of boundaries. The insertion of a membrane protein, M2, into these systems, allowed characterization of protein diffusion using high-speed AFM to demonstrate the first membrane protein 1D random walk. These quasi-1D lipid bilayers are ideal for testing and understanding fundamental concepts about the roles of dimensionality and size on physical properties of membranes from energy transfer to lipid packing
Enhanced cellular uptake of size-separated lipophilic silicon nanoparticles
Specific size, shape and surface chemistry influence the biological activity of nanoparticles. In the case of lipophilic nanoparticles, which are widely used in consumer products, there is evidence that particle size and formulation influences skin permeability and that lipophilic particles smaller than 6 nm can embed in lipid bilayers. Since most nanoparticle synthetic procedures result in mixtures of different particles, post-synthetic purification promises to provide insights into nanostructure-function relationships. Here we used size-selective precipitation to separate lipophilic allyl-benzyl-capped silicon nanoparticles into monodisperse fractions within the range of 1 nm to 5 nm. We measured liposomal encapsulation and cellular uptake of the monodisperse particles and found them to have generally low cytotoxicities in Hela cells. However, specific fractions showed reproducibly higher cytotoxicity than other fractions as well as the unseparated ensemble. Measurements indicate that the cytotoxicity mechanism involves oxidative stress and the differential cytotoxicity is due to enhanced cellular uptake by specific fractions. The results indicate that specific particles, with enhanced suitability for incorporation into lipophilic regions of liposomes and subsequent in vitro delivery to cells, are enriched in certain fractions
Nanogrooved microdiscs for bottom-up modulation of osteogenic differentiation
Grooved topographical features have effectively modulated cell differentiation on two-dimensional substrates. To transpose patterning into a 3D environmment, nanogrooved microdiscs, "topodiscs", are produced as cell carriers for bottom-up cell-mediated assembly. While enhancing cell proliferation, topodiscs led to the formation of bone-like aggregates, even in culture medium lacking osteoinductive factors.publishe
Strategies for Controlled Placement of Nanoscale Building Blocks
The capability of placing individual nanoscale building blocks on exact substrate locations in a controlled manner is one of the key requirements to realize future electronic, optical, and magnetic devices and sensors that are composed of such blocks. This article reviews some important advances in the strategies for controlled placement of nanoscale building blocks. In particular, we will overview template assisted placement that utilizes physical, molecular, or electrostatic templates, DNA-programmed assembly, placement using dielectrophoresis, approaches for non-close-packed assembly of spherical particles, and recent development of focused placement schemes including electrostatic funneling, focused placement via molecular gradient patterns, electrodynamic focusing of charged aerosols, and others
- …