844 research outputs found
A Lattice QCD Analysis of the Strangeness Magnetic Moment of the Nucleon
The outcome of the SAMPLE Experiment suggests that the strange-quark
contribution to the nucleon magnetic moment, G_M^s(0), may be greater than
zero. This result is very difficult to reconcile with expectations based on the
successful baryon magnetic-moment phenomenology of the constituent quark model.
We show that careful consideration of chiral symmetry reveals some rather
unexpected properties of QCD. In particular, it is found that the valence
u-quark contribution to the magnetic moment of the neutron can differ by more
than 50% from its contribution to the Xi^0 magnetic moment. This hitherto
unforeseen result leads to the value G_M^s(0) = -0.16 +/- 0.18 with a
systematic error, arising from the relatively large strange quark mass used in
existing lattice calculations, that would tend to shift G_M^s(0) towards small
positive values.Comment: RevTeX, 20 pages, 12 figure
Singlet baryons in the graded symmetry approach to partially quenched QCD
Progress in the calculation of the electromagnetic properties of baryon
excitations in lattice QCD is presenting new challenges in the determination of
sea-quark loop contributions to matrix elements. A reliable estimation of the
sea-quark loop contributions presents a pressing issue in the accurate
comparison of lattice QCD results with experiment. In this article, an
extension of the graded symmetry approach to partially quenched QCD is
presented, which builds on previous theory by explicitly including
flavor-singlet baryons in its construction. The formalism takes into account
the interactions among both octet and singlet baryons, octet mesons, and their
ghost counterparts; the latter enables the isolation of the quark-flow
disconnected sea-quark loop contributions. The introduction of the
flavor-singlet states anticipates the application of the method to baryon
excitations such as the lowest-lying odd-parity Lambda baryon, the
Lambda(1405), which is considered in detail as a worked example.Comment: arXiv copy updated to published version: Phys. Rev. D 94, 094004
(2016
Testing QCD Sum Rule Techniques on the Lattice
Results for the first test of the ``crude'' QCD continuum model, commonly
used in QCD Sum Rule analyses, are presented for baryon correlation functions.
The QCD continuum model is found to effectively account for excited state
contributions to the short-time regime of two-point correlation functions and
allows the isolation of ground state properties. Confusion in the literature
surrounding the physics represented in point-to-point correlation functions is
also addressed. These results justify the use of the ``crude'' QCD continuum
model and lend credence to the results of rigorous QCD Sum Rule analyses.Comment: Discussion of systematic uncertainties augmente
Chiral effective field theory beyond the power-counting regime
Novel techniques are presented, which identify the chiral power-counting
regime (PCR), and realize the existence of an intrinsic energy scale embedded
in lattice QCD results that extend outside the PCR. The nucleon mass is
considered as a benchmark for illustrating this new approach. Using
finite-range regularization, an optimal regularization scale can be extracted
from lattice simulation results by analyzing the renormalization of the low
energy coefficients. The optimal scale allows a description of lattice
simulation results that extend beyond the PCR by quantifying and thus handling
any scheme-dependence. Preliminary results for the nucleon magnetic moment are
also examined, and a consistent optimal regularization scale is obtained. This
indicates the existence of an intrinsic scale corresponding to the finite size
of the source of the pion cloud.Comment: 6 pages, 4 figures, conferenc
Power Counting Regime of Chiral Effective Field Theory and Beyond
Chiral effective field theory complements numerical simulations of quantum
chromodynamics (QCD) on a space-time lattice. It provides a model-independent
formalism for connecting lattice simulation results at finite volume and a
variety of quark masses to the physical world. The asymptotic nature of the
chiral expansion places the focus on the first few terms of the expansion.
Thus, knowledge of the power-counting regime (PCR) of chiral effective field
theory, where higher-order terms of the expansion may be regarded as
negligible, is as important as knowledge of the expansion itself. Through the
consideration of a variety of renormalization schemes and associated
parameters, techniques to identify the PCR where results are independent of the
renormalization scheme are established. The nucleon mass is considered as a
benchmark for illustrating this general approach. Because the PCR is small, the
numerical simulation results are also examined to search for the possible
presence of an intrinsic scale which may be used in a nonperturbative manner to
describe lattice simulation results outside of the PCR. Positive results that
improve on the current optimistic application of chiral perturbation theory
beyond the PCR are reported.Comment: 18 pages, 55 figure
Chiral extrapolations for nucleon magnetic moments
Lattice QCD simulations have made significant progress in the calculation of
nucleon electromagnetic form factors in the chiral regime in recent years. With
simulation results achieving pion masses of order ~180 MeV, there is an
apparent challenge as to how the physical regime is approached. By using
contemporary methods in chiral effective field theory, both the quark-mass and
finite-volume dependence of the isovector nucleon magnetic moment are carefully
examined. The extrapolation to the physical point yields a result that is
compatible with experiment, albeit with a combined statistical and systematic
uncertainty of 10%. The extrapolation shows a strong finite-volume dependence;
lattice sizes of L > 5 fm must be used to simulate results within 2% of the
infinite-volume result for the magnetic moment at the physical pion mass.Comment: 7 pages, 12 figures, 1 tabl
Chiral Behaviour of the Rho Meson in Lattice QCD
In order to guide the extrapolation of the mass of the rho meson calculated
in lattice QCD with dynamical fermions, we study the contributions to its
self-energy which vary most rapidly as the quark mass approaches zero; from the
processes and . It turns out that in
analysing the most recent data from CP-PACS it is crucial to estimate the
self-energy from using the same grid of discrete momenta as
included implicitly in the lattice simulation. The correction associated with
the continuum, infinite volume limit can then be found by calculating the
corresponding integrals exactly. Our error analysis suggests that a factor of
10 improvement in statistics at the lowest quark mass for which data currently
exists would allow one to determine the physical rho mass to within 5%.
Finally, our analysis throws new light on a long-standing problem with the
J-parameter.Comment: 13 pages, 7 figures. Full analytic forms of the self-energies are
included and a correction in the omega-pi self-energ
Isolating the \Lambda(1405) in Lattice QCD
The negative-parity ground state of the \Lambda{} baryon lies surprisingly
low in mass. At 1405.1 MeV, it lies lower than the negative-parity ground state
nucleon, even though it has a valence strange quark. Using the PACS-CS
(2+1)-flavour full-QCD ensembles available through the ILDG, we employ a
variational analysis using source and sink smearing to isolate this elusive
state. We find three low-lying odd-parity states, and for the first time
reproduce the correct level ordering with respect to the nearby scattering
thresholds.Comment: 4 pages, 7 figure
- …