78 research outputs found

    New Conformal Models with c<2/5c<2/5

    Full text link
    The zoo of two-dimensional conformal models has been supplemented by a series of nonunitary conformal models obtained by cosetting minimal models. Some of them coincide with minimal models, some do not have even Kac spectrum of conformal dimensions.Comment: LANDAU-93-TMP-6, 7 pages, plain TEX, misprints correcte

    Superconformal 2D Minimal Models and an Unusual Coset Construction

    Get PDF
    We consider a coset construction of minimal models. We define it rigorously and prove that it gives superconformal minimal models. This construction allows to build all primary fields of superconformal models and to calculate their three-point correlation functions.Comment: 9 pages, LANDAU-92-TMP-

    Free field constructions for the elliptic algebra Aq,p(sl^2){\cal A}_{q,p}(\hat{sl}_2) and Baxter's eight-vertex model

    Full text link
    Three examples of free field constructions for the vertex operators of the elliptic quantum group Aq,p(sl^2){\cal A}_{q,p}(\hat{sl}_2) are obtained. Two of these (for p1/2=±q3/2,p1/2=−q2p^{1/2}=\pm q^{3/2},p^{1/2}=-q^2) are based on representation theories of the deformed Virasoro algebra, which correspond to the level 4 and level 2 ZZ-algebra of Lepowsky and Wilson. The third one (p1/2=q3p^{1/2}=q^{3}) is constructed over a tensor product of a bosonic and a fermionic Fock spaces. The algebraic structure at p1/2=q3p^{1/2}=q^{3}, however, is not related to the deformed Virasoro algebra. Using these free field constructions, an integral formula for the correlation functions of Baxter's eight-vertex model is obtained. This formula shows different structure compared with the one obtained by Lashkevich and Pugai.Comment: 23 pages. Based on talks given at "MATHPHYS ODYSSEY 2001-Integrable Models and Beyond" at Okayama and Kyoto, February 19-23, 2001, et

    The Vertex-Face Correspondence and the Elliptic 6j-symbols

    Full text link
    A new formula connecting the elliptic 6j6j-symbols and the fusion of the vertex-face intertwining vectors is given. This is based on the identification of the kk fusion intertwining vectors with the change of base matrix elements from Sklyanin's standard base to Rosengren's natural base in the space of even theta functions of order 2k2k. The new formula allows us to derive various properties of the elliptic 6j6j-symbols, such as the addition formula, the biorthogonality property, the fusion formula and the Yang-Baxter relation. We also discuss a connection with the Sklyanin algebra based on the factorised formula for the LL-operator.Comment: 23 page
    • …
    corecore