8,247 research outputs found

    Discrete Symmetries of Off-Shell Electromagnetism

    Full text link
    We discuss the discrete symmetries of the Stueckelberg-Schrodinger relativistic quantum theory and its associated 5D local gauge theory, a dynamical description of particle/antiparticle interactions, with monotonically increasing Poincare-invariant parameter. In this framework, worldlines are traced out through the parameterized evolution of spacetime events, advancing or retreating with respect to the laboratory clock, with negative energy trajectories appearing as antiparticles when the observer describes the evolution using the laboratory clock. The associated gauge theory describes local interactions between events (correlated by the invariant parameter) mediated by five off-shell gauge fields. These gauge fields are shown to transform tensorially under under space and time reflections, unlike the standard Maxwell fields, and the interacting quantum theory therefore remains manifestly Lorentz covariant. Charge conjugation symmetry in the quantum theory is achieved by simultaneous reflection of the sense of evolution and the fifth scalar field. Applying this procedure to the classical gauge theory leads to a purely classical manifestation of charge conjugation, placing the CPT symmetries on the same footing in the classical and quantum domains. In the resulting picture, interactions do not distinguish between particle and antiparticle trajectories -- charge conjugation merely describes the interpretation of observed negative energy trajectories according to the laboratory clock.Comment: 26 page

    Editorial: Throwing Shoes

    Get PDF

    Duality in Off-Shell Electromagnetism

    Full text link
    In this paper, we examine the Dirac monopole in the framework of Off-Shell Electromagnetism, the five dimensional U(1) gauge theory associated with Stueckelberg-Schrodinger relativistic quantum theory. After reviewing the Dirac model in four dimensions, we show that the structure of the five dimensional theory prevents a natural generalization of the Dirac monopole, since the theory is not symmetric under duality transformations. It is shown that the duality symmetry can be restored by generalizing the electromagnetic field strength to an element of a Clifford algebra. Nevertheless, the generalized framework does not permit us to recover the phenomenological (or conventional) absence of magnetic monopoles.Comment: 18 page

    Non-Gaussianity detections in the Bianchi VIIh corrected WMAP 1-year data made with directional spherical wavelets

    Full text link
    Many of the current anomalies reported in the Wilkinson Microwave Anisotropy Probe (WMAP) 1-year data disappear after `correcting' for the best-fit embedded Bianchi type VII_h component (Jaffe et al. 2005), albeit assuming no dark energy component. We investigate the effect of this Bianchi correction on the detections of non-Gaussianity in the WMAP data that we previously made using directional spherical wavelets (McEwen et al. 2005a). As previously discovered by Jaffe et al. (2005), the deviations from Gaussianity in the kurtosis of spherical Mexican hat wavelet coefficients are eliminated once the data is corrected for the Bianchi component. This is due to the reduction of the cold spot at Galactic coordinates (l,b)=(209^\circ,-57\circ), which Cruz et al. (2005) claim to be the source of non-Gaussianity introduced in the kurtosis. Our previous detections of non-Gaussianity observed in the skewness of spherical wavelet coefficients are not reduced by the Bianchi correction. Indeed, the most significant detection of non-Gaussianity made with the spherical real Morlet wavelet at a significant level of 98.4% remains (using a very conservative method to estimate the significance). We make our code to simulate Bianchi induced temperature fluctuations publicly available.Comment: 11 pages, 8 figures, replaced to match version accepted by MNRA

    The History and Scope of the Virginia Declaratory Judgments Act

    Get PDF
    corecore