106 research outputs found
Magnetotransport of coupled electron-holes
The carriers in InAs-GaSb double quantum wells are hybrid ``electron-holes''.
We study the magnetotransport properties of such particles using a
two-component Keldysh technique, which results in a semi-analytic expression
for the small-field current. We show that zero temperature current can be large
even when the Fermi energy lies within the hybridization gap, a result which
cannot be understood within a semiclassical (Boltzmann) approach. Magnetic
field dependence of the conductance is also affected significantly by the
hybridization of electrons and holes.Comment: 4 pages, 2 figure
Impurity-induced dephasing of Andreev states
A study is presented concerning the influence of flicker noise in the
junction transparency on coherent transport in Andreev states. The amount of
dephasing is estimated for a microwave-activated quantum interferometer.
Possibilities of experimentally investigating the coupling between a
superconducting quantum point contact and its electromagnetic environment are
discussed.Comment: 8 pages, 4 figure
Cyclotron resonance in a two-dimensional electron gas with long-range randomness
We show that the the cyclotron resonance in a two-dimensional electron gas
has non-trivial properties if the correlation length of the disorder is larger
than the de Broglie wavelength: (a) the lineshape assumes three different forms
in strong, intermediate, and weak magnetic fields (b) at the transition from
the intermediate to the weak fields the linewidth suddenly collapses due to an
explosive growth in the fraction of electrons with a diffusive-type dynamics.Comment: A few typos correcte
Nonlinear acoustic and microwave absorption in glasses
A theory of weakly-nonlinear low-temperature relaxational absorption of
acoustic and electromagnetic waves in dielectric and metallic glasses is
developed. Basing upon the model of two-level tunneling systems we show that
the nonlinear contribution to the absorption can be anomalously large. This is
the case at low enough frequencies, where freqeuency times the minimal
relaxation time for the two-level system are much less than one. In dielectric
glasses, the lowest-order nonlinear contribution is proportional to the wave's
intensity. It is negative and exhibits anomalous frequency and temperature
dependencies. In metallic glasses, the nonlinear contribution is also negative,
and it is proportional to the square root of the wave's intensity and to the
frequency. Numerical estimates show that the predicted nonlinear contribution
can be measured experimentally
The Quantum Hall Effect in Drag: Inter-layer Friction in Strong Magnetic Fields
We study the Coulomb drag between two spatially separated electron systems in
a strong magnetic field, one of which exhibits the quantum Hall effect. At a
fixed temperature, the drag mimics the behavior of in the quantum
Hall system, in that it is sharply peaked near the transitions between
neighboring plateaux. We assess the impact of critical fluctuations near the
transitions, and find that the low temperature behavior of the drag measures an
exponent that characterizes anomalous low frequency dissipation; the
latter is believed to be present following the work of Chalker.Comment: 13 pages, Revtex 2.0, 1 figure upon request, P-93-11-09
Hall Coefficient in an Interacting Electron Gas
The Hall conductivity in a weak homogeneous magnetic field, , is calculated. We have shown that to leading order in
the Hall coefficient is not renormalized by the
electron-electron interaction. Our result explains the experimentally observed
stability of the Hall coefficient in a dilute electron gas not too close to the
metal-insulator transition. We avoid the currently used procedure that
introduces an artificial spatial modulation of the magnetic field. The problem
of the Hall effect is reformulated in a way such that the magnetic flux
associated with the scattering process becomes the central element of the
calculation.Comment: 23 pages, 15 figure
Coulomb Drag Between Parallel Ballistic Quantum Wires
The Coulomb drag between parallel, {\it ballistic} quantum wires is studied
theoretically in the presence of a perpendicular magnetic field B. The
transresistance R_D shows peaks as a function of the Fermi level and splitting
energy between the 1D subbands of the wires. The sharpest peaks appear when the
Fermi level crosses the subband extrema so that the Fermi momenta are small.
Two other kinds of peaks appear when either {\it intra}- or {\it inter}-subband
transitions of electrons have maximum probability; the {\it intra}-subband
transitions correspond to a small splitting energy. R_D depends on the field B
in a nonmonotonic fashion: it decreases with B, as a result of the suppression
of backscattering, and increases sharply when the Fermi level approaches the
subband bottoms and the suppression is outbalanced by the increase of the
Coulomb matrix elements and of the density of states.Comment: Text 14 pages in Latex/Revtex format, 4 Postscript figures. Phys.
Rev. B,in pres
Explanation for the Resistivity Law in Quantum Hall System
We consider a 2D electron system in a strong magnetic field, where the local
Hall resistivity is a function of position and
is small compared to . Particularly if the
correlations fall off slowly with distance, or if fluctuations exist on several
length scales, one finds that the macroscopic longitudinal resistivity
is only weakly dependent on and is approximately proportional to
the magnitude of fluctuations in . This may provide an explanation
of the empirical law where is
the Hall resistance, and is the magnetic field.Comment: 11 pages (REVTeX 3.0). Revised Version. Complete postscript file for
this paper is available on the World Wide Web at
http://cmtw.harvard.edu/~simon/ ; Preprint number HU-CMT-94S0
Exciton correlations in coupled quantum wells and their luminescence blue shift
In this paper we present a study of an exciton system where electrons and
holes are confined in double quantum well structures. The dominating
interaction between excitons in such systems is a dipole - dipole repulsion. We
show that the tail of this interaction leads to a strong correlation between
excitons and substantially affects the behavior of the system. Making use of
qualitative arguments and estimates we develop a picture of the exciton -
exciton correlations in the whole region of temperature and concentration where
excitons exist. It appears that at low concentration degeneracy of the excitons
is accompanied with strong multi-particle correlation so that the system cannot
be considered as a gas. At high concentration the repulsion suppresses the
quantum degeneracy down to temperatures that could be much lower than in a Bose
gas with contact interaction. We calculate the blue shift of the exciton
luminescence line which is a sensitive tool to observe the exciton - exciton
correlations.Comment: 27 pages in PDF and DVI format, 8 figure
Phonon-Coupled Electron Tunneling in Two and Three-Dimensional Tunneling Configurations
We treat a tunneling electron coupled to acoustical phonons through a
realistic electron phonon interaction: deformation potential and piezoelectric,
in two or three-dimensional tunneling configurations. Making use of slowness of
the phonon system compared to electron tunneling, and using a Green function
method for imaginary time, we are able to calculate the change in the
transition probability due to the coupling to phonons. It is shown using
standard renormalization procedure that, contrary to the one-dimensional case,
second order perturbation theory is sufficient in order to treat the
deformation potential coupling, which leads to a small correction to the
transmission coefficient prefactor. In the case of piezoelectric coupling,
which is found to be closely related to the piezoelectric polaron problem,
vertex corrections need to be considered. Summing leading logarithmic terms, we
show that the piezoelectric coupling leads to a significant change of the
transmission coefficient.Comment: 17 pages, 4 figure
- …