1,563 research outputs found

    Electromechanical Quantum Simulators

    Full text link
    Digital quantum simulators are among the most appealing applications of a quantum computer. Here we propose a universal, scalable, and integrated quantum computing platform based on tunable nonlinear electromechanical nano-oscillators. It is shown that very high operational fidelities for single and two qubits gates can be achieved in a minimal architecture, where qubits are encoded in the anharmonic vibrational modes of mechanical nanoresonators, whose effective coupling is mediated by virtual fluctuations of an intermediate superconducting artificial atom. An effective scheme to induce large single-phonon nonlinearities in nano-electromechanical devices is explicitly discussed, thus opening the route to experimental investigation in this direction. Finally, we explicitly show the very high fidelities that can be reached for the digital quantum simulation of model Hamiltonians, by using realistic experimental parameters in state-of-the art devices, and considering the transverse field Ising model as a paradigmatic example.Comment: 14 pages, 8 figure

    Parametric Amplification and Back-Action Noise Squeezing by a Qubit-Coupled Nanoresonator

    Get PDF
    We demonstrate the parametric amplification and noise squeezing of nanomechanical motion utilizing dispersive coupling to a Cooper-pair box qubit. By modulating the qubit bias and resulting mechanical resonance shift, we achieve gain of 30 dB and noise squeezing of 4 dB. This qubit-mediated effect is 3000 times more effective than that resulting from the weak nonlinearity of capacitance to a nearby electrode. This technique may be used to prepare nanomechanical squeezed states

    Vortex dynamics of rotating dipolar Bose-Einstein condensates

    Full text link
    We study the influence of dipole-dipole interaction on the formation of vortices in a rotating dipolar Bose-Einstein condensate (BEC) of 52^{52}Cr and 164^{164}Dy atoms in quasi two-dimensional geometry. By numerically solving the corresponding time-dependent mean-field Gross-Pitaevskii equation, we show that the dipolar interaction enhances the number of vortices while a repulsive contact interaction increases the stability of the vortices. Further, an ordered vortex lattice of relatively large number of vortices is found in a strongly dipolar BEC.Comment: 15 pages, 10 figures, 1 tabl

    Tuning the structural and dynamical properties of a dipolar Bose-Einstein condensate: Ripples and instability islands

    Full text link
    It is now well established that the stability of aligned dipolar Bose gases can be tuned by varying the aspect ratio of the external harmonic confinement. This paper extends this idea and demonstrates that a Gaussian barrier along the strong confinement direction can be employed to tune both the structural properties and the dynamical stability of an oblate dipolar Bose gas aligned along the strong confinement direction. In particular, our theoretical mean-field analysis predicts the existence of instability islands immersed in otherwise stable regions of the phase diagram. Dynamical studies indicate that these instability islands, which can be probed experimentally with present-day technology, are associated with the going soft of a Bogoliubov--de Gennes excitation frequency with radial breathing mode character. Furthermore, we find dynamically stable ground state densities with ripple-like oscillations along the radial direction. These structured ground states exist in the vicinity of a dynamical radial roton-like instability.Comment: 9 pages, 11 figure
    • …
    corecore