7,059 research outputs found

    Where is the pseudoscalar glueball ?

    Full text link
    The pseudoscalar mesons with the masses higher than 1 GeV are assumed to belong to the meson decuplet including the glueball as the basis state supplementing the standard SU(3)FSU(3)_F nonet of light qqˉq\bar{q} states (u,d,s)(u,d,s). The decuplet is investigated by means of an algebraic approach based on hypothesis of vanishing the exotic SU(3)FSU(3)_F commutators of "charges" and their time derivatives. These commutators result in a system of equations determining contents of the isoscalar octet state in the physical isoscalar mesons as well as the mass formula including all masses of the decuplet: π(1300)\pi(1300), K(1460), η(1295)\eta(1295), η(1405)\eta(1405) and η(1475)\eta(1475). The physical isoscalar mesons ηi\eta_i, are expressed as superpositions of the "ideal" qqˉq\bar{q} states (NN and SS) and the glueball GG with the mixing coefficient matrix following from the exotic commutator restrictions. Among four one-parameter families of the calculated mixing matrix (numerous solutions result from bad quality of data on the π(1300)\pi(1300) and K(1460) masses) there is one family attributing the glueball-dominant composition to the η(1405)\eta(1405) meson. Similarity between the pseudoscalar and scalar decuplets, analogy between the whole spectra of the 0+0^{-+} and 0++0^{++} mesons and affinity of the glueball with excited qqˉq\bar{q} states are also noticed.Comment: 18 pp., 2. figs., 2 tabs.; Published version. One of the authors withdraws his nam

    Origin of bulk uniaxial anisotropy in zinc-blende dilute magnetic semiconductors

    Full text link
    It is demonstrated that the nearest neighbor Mn pair on the GaAs (001) surface has a lower energy for the [-110] direction comparing to the [110] case. According to the group theory and the Luttinger's method of invariants, this specific Mn distribution results in bulk uniaxial in-plane and out-of-plane anisotropies. The sign and magnitude of the corresponding anisotropy energies determined by a perturbation method and ab initio computations are consistent with experimental results.Comment: 5 pages, 1 figur

    Angular dependence of the emission wavelength in microactivity organic light-emitting diodes

    Get PDF
    In this work, we have calculated the emission wavelength dependence on the viewing angle for different combinations of metallic mirrors. The dispersion of the optical functions of ten different metals is fully taken into account using Lorentz oscillator model. The metals have been assigned to a function of top (cathode) or bottom (anode) mirror based on their work function. Refractive index dispersion of organic layers, N,N'-disphenyl-N,N'-bis(3-methylphenyl)-1,1'-disphenyl-4,4'-diamine (TPD) and tris (8-hydroxyquinoline) aluminum (emitting layer) is taken into account via Cauchy model. The change of the emission wavelength with angle has been calculated iteratively-to fully take into account wavelength dependence of indices of refraction and phase change. Calculations have been performed for different hole transport materials and different thickness of the emitting layer

    Kinematics in Kapteyn's Selected Area 76: Orbital Motions Within the Highly Substructured Anticenter Stream

    Get PDF
    We have measured the mean three-dimensional kinematics of stars in Kapteyn's Selected Area (SA) 76 (l=209.3, b=26.4 degrees) that were selected to be Anticenter Stream (ACS) members on the basis of their radial velocities, proper motions, and location in the color-magnitude diagram. From a total of 31 stars ascertained to be ACS members primarily from its main sequence turnoff, a mean ACS radial velocity (derived from spectra obtained with the Hydra multi-object spectrograph on the WIYN 3.5m telescope) of V_helio = 97.0 +/- 2.8 km/s was determined, with an intrinsic velocity dispersion sigma_0 = 12.8 \pm 2.1 km/s. The mean absolute proper motions of these 31 ACS members are mu_alpha cos (delta) = -1.20 +/- 0.34 mas/yr and mu_delta = -0.78 \pm 0.36 mas/yr. At a distance to the ACS of 10 \pm 3 kpc, these measured kinematical quantities produce an orbit that deviates by ~30 degrees from the well-defined swath of stellar overdensity constituting the Anticenter Stream in the western portion of the Sloan Digital Sky Survey footprint. We explore possible explanations for this, and suggest that our data in SA 76 are measuring the motion of a kinematically cold sub-stream among the ACS debris that was likely a fragment of the same infalling structure that created the larger ACS system. The ACS is clearly separated spatially from the majority of claimed Monoceros ring detections in this region of the sky; however, with the data in hand, we are unable to either confirm or rule out an association between the ACS and the poorly-understood Monoceros structure.Comment: Accepted to ApJ. 48 pages, 20 figures, preprint forma

    The Optical Emission from Gamma-ray Quasars

    Full text link
    We present photometric observations of six radio-loud quasars that were detected by the COMPTEL gamma-ray telescope. The data encompasses seven wavebands in the optical and near-infrared. After correction for Galactic extinction, we find a wide range in optical slopes. Two sources are as blue as optically-selected quasars, and are likely to be dominated by the accretion disc emission, while three others show colours consistent with a red synchrotron component. We discuss the properties of the COMPTEL sample of quasars, as well as the implications our observations have for multi-wavelength modelling of gamma-ray quasars.Comment: 12 pages, 3 figures, accepted for publication in P.A.S.A; minor typos correcte

    The inner structure and kinematics of the Sagittarius dwarf galaxy as a product of tidal stirring

    Full text link
    The tidal stirring model envisions the formation of dwarf spheroidal (dSph) galaxies in the Local Group via the tidal interaction of disky dwarf systems with a larger host galaxy like the Milky Way. These progenitor disks are embedded in extended dark halos and during the evolution both components suffer strong mass loss. In addition, the disks undergo the morphological transformation into spheroids and the transition from ordered to random motion of their stars. Using collisionless N-body simulations we construct a model for the nearby and highly elongated Sagittarius (Sgr) dSph galaxy within the framework of the tidal stirring scenario. Constrained by the present known orbit of the dwarf, the model suggests that in order to produce the majority of tidal debris observed as the Sgr stream, but not yet transform the core of the dwarf into a spherical shape, Sgr must have just passed the second pericenter of its current orbit around the Milky Way. In the model, the stellar component of Sgr is still very elongated after the second pericenter and morphologically intermediate between the strong bar formed at the first pericenter and the almost spherical shape existing after the third pericenter. This is thus the first model of the evolution of the Sgr dwarf that accounts for its observed very elliptical shape. At the present time there is very little intrinsic rotation left and the velocity gradient detected along the major axis is almost entirely of tidal origin. We model the recently measured velocity dispersion profile for Sgr assuming that mass traces light and estimate its current total mass within 5 kpc to be 5.2 x 10^8 M_sun. To have this mass at present, the model requires that the initial virial mass of Sgr must have been as high as 1.6 x 10^10 M_sun, comparable to that of the Large Magellanic Cloud, which may serve as a suitable analog for the pre-interaction, Sgr progenitor.Comment: 14 pages, 14 figures, minor changes to match the version published in Ap

    Exploring Halo Substructure with Giant Stars: The Dynamics and Metallicity of the Dwarf Spheroidal in Bootes

    Get PDF
    We report the results of a spectroscopic study of the Bootes (Boo) dwarf spheroidal (dSph) galaxy carried out with the WIYN telescope and the Hydra multifiber spectrograph. Radial velocities have been measured for 58 Boo candidate stars selected to have magnitudes and colors consistent with its red and asymptotic giant branches. Within the 13' half-light radius, seven members of Boo yield a systemic velocity of V_r=95.6+-3.4 km/s and a velocity dispersion of 6.6+-2.3 km/s. This implies a mass on the order of 1 x 10^7 M_sun, similar to the inferred masses of other Galactic dSphs. Adopting a total Boo luminosity of L=1.8 x 10^4 L_sun to 8.6 x 10^4 L_sun implies M/L ~ 610 to 130, making Boo, the most distorted known Milky Way dwarf galaxy, potentially also the darkest. From the spectra of Boo member stars we estimate its metallicity to be [Fe/H] ~ -2.5, which would make it the most metal poor dSph known to date.Comment: Accepted for publication in ApJ Letter
    corecore