16,391 research outputs found
Effects of flanges on pressure distribution on a flat plate and on a corrugated surface at Mach numbers from 0.60 to 1.97
An 8 by 6 foot supersonic wind tunnel was used to obtain the static pressure distribution on a plate in the region of a flange placed normal to the airstream. Tests were conducted on both a flat plate surface and a corrugated surface using flange heights ranging from 10 to 125 percent of the boundary layer height. Data were obtained at a zero degree angle-of-attack and at Mach numbers from 0.60 to 1.97
Eddy Impacts on the Florida Current
The Gulf Stream in the Atlantic carries warm water northwards and forms both the return closure of the subtropical gyre as well as the upper limb of the meridional overturning circulation. Recent time series recorded east of the Bahamas at 26°N indicate that from May 2009 to April 2011, in contrast with past observations, the northward flowing Antilles Current covaried with the Gulf Stream in the Florida Straits—the Florida Current—even though the Florida and Antilles Currents are separated by banks and islands spanning 150?km. The peak-to-trough amplitude of transport variations during this period was 15?×?106?m3?s?1 for the Florida Current and 12?×?106?m3?s?1 for the Antilles Current, at time scales of 50?days to a year. From satellite observations, we show that the fluctuations in both the Florida and Antilles Currents between May 2009 and April 2011 are driven by eddy activity east of the Bahamas. Since the Florida Current time series is a critical time series for the state of the oceans, and often compared to climate models, this newly identified source of variability needs careful consideration when attributing the variability of the Florida Current to changes in the larger-scale circulations (e.g., gyre and overturning) or wind forcing.<br/
Natural Coronagraphic Observations of the Eclipsing T Tauri System KH 15D: Evidence for Accretion and Bipolar Outflow in a WTTS
We present high resolution (R 44,000) UVES spectra of the eclipsing
pre-main sequence star KH 15D covering the wavelength range 4780 to 6810 {\AA}
obtained at three phases: out of eclipse, near minimum light and during egress.
The system evidently acts like a natural coronagraph, enhancing the contrast
relative to the continuum of hydrogen and forbidden emission lines during
eclipse. At maximum light the H equivalent width was 2 {\AA} and
the profile showed broad wings and a deep central absorption. During egress the
equivalent width was much higher (70 {\AA}) and the broad wings, which
extend to 300 km/s, were prominent. During eclipse totality the
equivalent width was less than during egress (40 {\AA}) and the high
velocity wings were much weaker. H showed a somewhat different behavior,
revealing only the blue-shifted portion of the high velocity component during
eclipse and egress. [OI] 6300, 6363 lines are easily seen both
out of eclipse and when the photosphere is obscured and exhibit little or no
flux variation with eclipse phase. Our interpretation is that KH 15D, although
clearly a weak-line T Tauri star by the usual criteria, is still accreting
matter from a circumstellar disk, and has a well-collimated bipolar jet. As the
knife-edge of the occulting matter passes across the close stellar environment
it is evidently revealing structure in the magnetosphere of this pre-main
sequence star with unprecedented spatial resolution. We also show that there is
only a small, perhaps marginally significant, change in the velocity of the K7
star between the maximum light and egress phases probed here
The Origins of Fluorescent H_2 Emission From T Tauri Stars
We survey fluorescent H_2 emission in HST STIS spectra of the classical T Tauri stars (CTTSs) TW Hya, DF Tau, RU Lupi, T Tau, and DG Tau, and the weak-lined T Tauri star (WTTS) V836 Tau. From each of those sources we detect between 41 and 209 narrow H_2 emission lines, most of which are pumped by strong Lyα emission. H_2 emission is not detected from the WTTS V410 Tau. The fluorescent H_2 emission appears to be common to circumstellar environments around all CTTSs, but high spectral and spatial resolution STIS observations reveal diverse phenomenon. Blueshifted H_2 emission detected from RU Lupi, T Tau, and DG Tau is consistent with an origin in an outflow. The H_2 emission from TW Hya, DF Tau, and V836 Tau is centered at the radial velocity of the star and is consistent with an origin in a warm disk surface. The H_2 lines from RU Lupi, DF Tau, and T Tau also have excess blueshifted H_2 emission that extends to as much as -100 km s^(-1). The strength of this blueshifted component from DF Tau and T Tau depends on the upper level of the transition. In all cases, the small aperture and attenuation of H_2 emission by stellar winds restricts the H_2 emission to be formed close to the star. In the observation of RU Lupi, the Lyα emission and the H_2 emission that is blueshifted by 15 km s^(-1) are extended to the SW by ~0".07, although the faster H_2 gas that extends to ~100 km s^(-1) is not spatially extended. We also find a small reservoir of H_2 emission from TW Hya and DF Tau consistent with an excitation temperature of ~2.5 × 10^4 K
A Young Planet Search in Visible and IR Light: DN Tau, V836 Tau, and V827 Tau
In searches for low-mass companions to late-type stars, correlation between
radial velocity variations and line bisector slope changes indicates
contamination by large starspots. Two young stars demonstrate that this test is
not sufficient to rule out starspots as a cause of radial velocity variations.
As part of our survey for substellar companions to T Tauri stars, we identified
the ~2 Myr old planet host candidates DN Tau and V836 Tau. In both cases,
visible light radial velocity modulation appears periodic and is uncorrelated
with line bisector span variations, suggesting close companions of several
M_Jup in these systems. However, high-resolution, infrared spectroscopy shows
that starspots cause the radial velocity variations. We also report unambiguous
results for V827 Tau, identified as a spotted star on the basis of both visible
light and infrared spectroscopy. Our results suggest that infrared follow up
observations are critical for determining the source of radial velocity
modulation in young, spotted stars.Comment: Accepted for publication in the Astrophysical Journal Letter
Venting characteristics of gaseous helium and nitrogen discharging into a free stream at Mach numbers from 0.60 to 1.57
An experimental investigation was conducted in the Lewis Research Center 8- by 6-Foot Supersonic Wind Tunnel to compare the effects on discharge coefficient of venting gaseous helium and gaseous nitrogen into a free stream. The test was conducted from Mach 0.06 to 1.57 with the vent mounted in a flat plate. The plate was strut mounted to the tunnel ceiling and at a 0 angle of attack. The gases were discharged from a plenum chamber through a 2.54-centimeter (1.00-in.) diameter vent. The ratio of local static pressure to plenum pressure was varied from 0.51 to 0.975. The ratio of boundary layer thickness to vent diameter varied from a maximum of 1.34 at Mach 0.60 to a minimum of 0.55 at Mach 1.37
The Far-Ultraviolet Spectra of TW Hya. II. Models of H2 Fluorescence in a Disk
We measure the temperature of warm gas at planet-forming radii in the disk
around the classical T Tauri star (CTTS) TW Hya by modelling the H2
fluorescence observed in HST/STIS and FUSE spectra. Strong Ly-alpha emission
irradiates a warm disk surface within 2 AU of the central star and pumps
certain excited levels of H2. We simulate a 1D plane-parallel atmosphere to
estimate fluxes for the 140 observed H2 emission lines and to reconstruct the
Ly-alpha emission profile incident upon the warm H2. The excitation of H2 can
be determined from relative line strengths by measuring self-absorption in
lines with low-energy lower levels, or by reconstructing the Ly-alpha profile
incident upon the warm H2 using the total flux from a single upper level and
the opacity in the pumping transition. Based on those diagnostics, we estimate
that the warm disk surface has a column density of log
N(H2)=18.5^{+1.2}_{-0.8}, a temperature T=2500^{+700}_{-500} K, and a filling
factor of H2, as seen by the source of Ly-alpha emission, of 0.25\pm0.08 (all
2-sigma error bars). TW Hya produces approximately 10^{-3} L_\odot in the FUV,
about 85% of which is in the Ly-alpha emission line. From the H I absorption
observed in the Ly-alpha emission, we infer that dust extinction in our line of
sight to TW Hya is negligible.Comment: Accepted by ApJ. 26 pages, 17 figures, 6 table
Starspot-induced optical and infrared radial velocity variability in T Tauri star Hubble 4
We report optical (6150 Ang) and K-band (2.3 micron) radial velocities
obtained over two years for the pre-main sequence weak-lined T Tauri star
Hubble I 4. We detect periodic and near-sinusoidal radial velocity variations
at both wavelengths, with a semi-amplitude of 1395\pm94 m/s in the optical and
365\pm80 m/s in the infrared. The lower velocity amplitude at the longer
wavelength, combined with bisector analysis and spot modeling, indicates that
there are large, cool spots on the stellar surface that are causing the radial
velocity modulation. The radial velocities maintain phase coherence over
hundreds of days suggesting that the starspots are long-lived. This is one of
the first active stars where the spot-induced velocity modulation has been
resolved in the infrared.Comment: Accepted for publication in The Astrophysical Journa
- …