1,208 research outputs found

    Theory of fluctuation conductivity from interband pairing in pnictide superconductors

    Get PDF
    We derive the effective action for superconducting fluctuations in a four-band model for pnictides, discussing the emergence of a single critical mode out of a dominant interband pairing mechanism. We then apply our model to calculate the paraconductivity in two-dimensional and layered three-dimensional systems, and compare our results with recent resistivity measurements in SmFeAsOFComment: 4 pages, 1 figure; final versio

    Effect of mesoscopic inhomogeneities on local tunnelling density of states

    Full text link
    We carry out a theoretical analysis of the momentum dependence of the Fourier-transformed local density of states (LDOS) in the superconducting cuprates within a model considering the interference of quasiparticles scattering on quenched impurities. The impurities introduce an external scattering potential, which is either nearly local in space or it can acquire a substantial momentum dependence due to a possible strong momentum dependence of the electronic screening near a charge modulation instability. The key new effect that we introduce is an additional mesoscopic disorder aiming to reproduce the inhomogeneities experimentally observed in scanning tunnelling microscopy. The crucial effect of this mesoscopic disorder is to give rise to point-like spectroscopic features, to be contrasted with the curve-like shape of the spectra previously calculated within the interfering-quasiparticle schemes. It is also found that stripe-like charge modulations play a relevant role to correctly reproduce all the spectral features of the experiments.Comment: 11 pages and 5 figure

    Signatures of nematic quantum critical fluctuations in the Raman spectra of lightly doped cuprates

    Full text link
    We consider the lightly doped cuprates Y0.97_{0.97}Ca0.03_{0.03}BaCuO6.05_{6.05} and La2−x_{2-x}Srx_xCuO4_4 (with x=0.02x=0.02,0.04), where the presence of a fluctuating nematic state has often been proposed as a precursor of the stripe (or, more generically, charge-density wave) phase, which sets in at higher doping. We phenomenologically assume a quantum critical character for the longitudinal and transverse nematic, and for the charge-ordering fluctuations, and investigate the effects of these fluctuations in Raman spectra. We find that the longitudinal nematic fluctuations peaked at zero transferred momentum account well for the anomalous Raman absorption observed in these systems in the B2gB_{2g} channel, while the absence of such effect in the B1gB_{1g} channel may be due to the overall suppression of Raman response at low frequencies, associated with the pseudogap. While in Y0.97_{0.97}Ca0.03_{0.03}BaCuO6.05_{6.05} the low-frequency lineshape is fully accounted by longitudinal nematic collective modes alone, in La2−x_{2-x}Srx_xCuO4_4 also charge-ordering modes with finite characteristic wavevector are needed to reproduce the shoulders observed in the Raman response. This different involvement of the nearly critical modes in the two materials suggests a different evolution of the nematic state at very low doping into the nearly charge-ordered state at higher doping.Comment: 12 pages with 10 figures, to appear in Phys. Rev. B 201

    Charge-fluctuation contribution to the Raman response in superconducting cuprates

    Full text link
    We calculate the Raman response contribution due to collective modes, finding a strong dependence on the photon polarizations and on the characteristic wavevectors of the modes. We compare our results with recent Raman spectroscopy experiments in underdoped cuprates, La2−xSrxCuO4La_{2-x}Sr_xCuO_4 and (Y1.97Ca0.3)Ba2CuO6.05(Y_{1.97}Ca_{0.3})Ba_2CuO_{6.05}, where anomalous low-energy peaks are observed, which soften upon lowering the temperature. We show that the specific dependence on doping and on photon polarizations of these peaks is only compatible with charge collective excitations at finite wavelength.Comment: 5 pages, 3 figure

    Wo3 and ionic liquids: A synergic pair for pollutant gas sensing and desulfurization

    Get PDF
    This review deals with the notable results obtained by the synergy between ionic liquids (ILs) and WO3 in the field of pollutant gas sensing and sulfur removal pretreatment of fuels. Starting from the known characteristics of tungsten trioxide as catalytic material, many authors have proposed the use of ionic liquids in order to both direct WO3 production towards controllable nanostructures (nanorods, nanospheres, etc.) and to modify the metal oxide structure (incorporating ILs) in order to increase the gas adsorption ability and, thus, the catalytic efficiency. Moreover, ionic liquids are able to highly disperse WO3 in composites, thus enhancing the contact surface and the catalytic ability of WO3 in both hydrodesulfurization (HDS) and oxidative desulfurization (ODS) of liquid fuels. In particular, the use of ILs in composite synthesis can direct the hydrogenation process (HDS) towards sulfur compounds rather than towards olefins, thus preserving the octane number of the fuel while highly reducing the sulfur content and, thus, the possibility of air pollution with sulfur oxides. A similar performance enhancement was obtained in ODS, where the high dispersion of WO3 (due to the use of ILs during the synthesis) allows for noteworthy results at very low temperatures (50â—¦ C)

    Extended paraconductivity regime in underdoped cuprates

    Full text link
    We reconsider transport experiments in strongly anisotropic superconducting cuprates and we find that universal Aslamazov-Larkin (AL) paraconductivity in two dimensions is surprisingly robust even in the underdoped regime below the pseudogap crossover temperature T^*. We also establish that the underlying normal state resistivity in the pseudogap phase is (almost) linear in temperature, with all the deviations being quantitatively accounted by AL paraconductivity. The disappearence of paraconductivity is governed by the disappearence of gaussian pair fluctuations at an energy scale related to T^*.Comment: 5 pages and 2 figure
    • …
    corecore