46 research outputs found
Functional monomer impurity affects adhesive performance
Objective
The functional monomer 10-MDP has been considered as one of the best performing functional monomers for dental adhesives. Different adhesives containing 10-MDP are commercially available, among which many so-called ‘universal’ adhesives. We hypothesize that the quality of the functional monomer 10-MDP in terms of purity may affect bonding performance.
Methods
We therefore characterized three different 10-MDP versions (10-MDP_KN provided by Kuraray Noritake; 10-MDP_PCM provided by PCM; 10-MDP_DMI provided by DMI) using NMR, and analyzed their ability to form 10-MDP_Ca salts on dentin using XRD. The ‘immediate’ and ‘aged’ micro-tensile bond strength (μTBS) to dentin of three experimental 10-MDP primers was measured. The resultant interfacial adhesive-dentin ultra-structure was characterized using TEM.
Results
NMR disclosed impurities and the presence of 10-MDP dimer in 10-MDP_PCM and 10-MDP_DMI. 10-MDP_PCM and 10-MDP_DMI appeared also sensitive to hydrolysis. 10-MDP_KN, on the contrary, contained less impurities and dimer, and did not undergo hydrolysis. XRD revealed more intense 10-MDP_Ca salt deposition on dentin induced by 10-MDP_KN. The adhesive based on the experimental 10-MDP_KN primer resulted in a significantly higher ‘immediate’ bond strength that remained stable upon aging; the μTBS of the experimental 10-MDP_PCM and 10-MDP_DMI adhesives significantly dropped upon aging. TEM revealed thicker hybridization and more intense nano-layering for 10-MDP_KN.publisher: Elsevier
articletitle: Functional monomer impurity affects adhesive performance
journaltitle: Dental Materials
articlelink: http://dx.doi.org/10.1016/j.dental.2015.09.019
content_type: article
copyright: Copyright © 2015 Published by Elsevier Ltd.status: publishe