2,503 research outputs found

    Solar Radio Bursts —Deployable Low-band Ionosphere and Transients Experiment (DLITE) Arrays

    Get PDF
    Solar radio bursts, phenomenon that often accompany CME, solar flares and other solar events, can be detected on earth and used in the prediction of solar weather that affects earth systems in several ways. As part of the NREIP Program supporting the Naval Research Laboratory, Remote Sensing Division, approximately ten interns participated in the analysis of data collected by DLITE and WAVES radio data. Data from DLITE is often used as a complement to data from WAVES due to differences in frequency range and resolution. The analysis helps to correlate the DLITE data with the data collected from other sources. This is important because using data from solar weather to predict effects on earth will help mitigate the potential problems that solar weather can cause for earth-based systems such as power grids, GPS systems and electronic communication

    Polarity-dependent reversible resistance switching in Ge–Sb–Te phase-change thin films

    Get PDF
    In this paper, we demonstrate reversible resistance switching in a capacitorlike cell using a Ge–Sb–Te film that does not rely on amorphous-crystalline phase change. The polarity of the applied electric field switches the cell resistance between lower- and higher-resistance states, as was observed in current-voltage characteristics. Moreover, voltage pulses less than 1.25 V showed this switching within time scales of microseconds with more than 40% contrast between the resistance states. The latter are found to be nonvolatile for months. The switching could also be achieved at nanoscales with atomic force microscopy with a better resistance contrast of three orders of magnitude.

    IF impedance and mixer gain of NbN hot electron bolometers

    Get PDF
    The intermediate frequency (IF) characteristics, the frequency dependent IF impedance, and the mixer conversion gain of a small area hot electron bolometer (HEB) have been measured and modeled. The device used is a twin slot antenna coupled NbN HEB mixer with a bridge area of 1×0.15 µm^2, and a critical temperature of 8.3 K. In the experiment the local oscillator frequency was 1.300 THz, and the (IF) 0.05–10 GHz. We find that the measured data can be described in a self-consistent manner with a thin film model presented by Nebosis et al. [Proceedings of the Seventh International Symposium on Space Terahertz Technology, Charlottesville, VA, 1996 (unpublished), pp. 601–613], that is based on the two temperature electron-phonon heat balance equations of Perrin-Vanneste [J. Phys. (Paris) 48, 1311 (1987)]. From these results the thermal time constant, governing the gain bandwidth of HEB mixers, is observed to be a function of the electron-phonon scattering time, phonon escape time, and the electron temperature. From the developed theory the maximum predicted gain bandwidth for a NbN HEB is found to be 5.5–6 GHz. In contrast, the gain bandwidth of the device under discussion was measured to be ~2.3 GHz which, consistent with the outlined theory, is attributed to a somewhat low critical temperature and nonoptimal film thickness (6 nm)

    Polarization retention loss in PbTiO3 ferroelectric films due to leakage currents

    Get PDF
    The relationship between retention loss in single crystal PbTiO3 ferroelectric thin films and leakage currents is demonstrated by piezoresponse and conductive atomic force microscopy measurements. It was found that the polarization reversal in the absence of an electric field followed a stretched exponential behavior 1−exp[−(t/k)^d] with exponent d>1, which is distinct from a dispersive random walk process with d<1. The latter has been observed in polycrystalline films for which retention loss was associated with grain boundaries. The leakage current indicates power law scaling at short length scales, which strongly depends on the applied electric field. Additional information of the microstructure, which contributes to an explanation of the presence of leakage currents, is presented with high resolution transmission electron microscopy analysis.

    Cerebral Autoregulation in Sick Infants:Current Insights

    Get PDF
    Cerebrovascular autoregulation is the ability to maintain stable cerebral blood flow within a range of cerebral perfusion pressures. When cerebral perfusion pressure is outside the limits of effective autoregulation, the brain is subjected to hypoperfusion or hyperperfusion, which may cause vascular injury, hemorrhage, and/or hypoxic white matter injury. Infants born preterm, after fetal growth restriction, with congenital heart disease, or with hypoxic-ischemic encephalopathy are susceptible to a failure of cerebral autoregulation. Bedside assessment of cerebrovascular autoregulation would offer the opportunity to prevent brain injury. Clinicians need to know which patient populations and circumstances are associated with impaired/absent cerebral autoregulation

    Modelling Holling type II functional response in deterministic and stochastic food chain models with mass conservation

    Get PDF
    The Rosenzweig-MacArthur predator-prey model is the building block in modeling food chain, food webs and ecosystems. There are a number of hidden assumptions involved in the derivation. For instance the prey population growth is logistic without predation but also with predation. In order to reveal these we will start with modelling a resource-predator-prey system in a closed spatially homogeneous environment. This allows us to keep track of the nutrient flow. With an instantaneous remineralisation of the products excreted in the environment by the populations and dead body mass there is conservation of mass. This allows for a model dimension reduction and yields the mass balance predator-prey model. When furthermore the searching and handling processes are much faster that the population changing rates, the trophic interaction is described by a Holling type II functional response, also assumed in the Rosenzweig-MacArthur model. The derivation uses an extended deterministic model with number of searching and handling predators as model variables where the ratio of the predator/prey body masses is used as a mechanistic time-scale parameter. This extended model is also used as a starting point for the derivation of a stochastic model. We will investigate the stochastic effects of random switching between searching and handling of the predators and predator dying. Prey growth by consumption of ambient resources is still deterministic and therefore the stochastic model is hybrid. The transient dynamics is studied by numerical Monte Carlo simulations and also the quasi-equilibrium distribution for the population quantities is calculated. The body mass of the prey individual is the scaling parameter in the stochastic model formulation. This allows for a quantification of the mean-field approximation criterion for the justification of replacement of the stochastic by a deterministic model.Marie Skłodowska-Curie grant agreement No. 79249

    An SIS-based sideband-separating heterodyne mixer optimized for the 600 to 720 GHz band

    Get PDF
    The Atacama Large Millimeter Array (ALMA) is the largest radio astronomical enterprise ever proposed. When completed, each of its 64 constituting radio-telescopes will be able to hold 10 heterodyne receivers covering the spectroscopic windows allowed by the atmospheric transmission at the construction site, the altiplanos of the northern Chilean Andes. In contrast to the sideband-separating (2SB) receivers being developed at low frequencies, double-side-band (DSB) receivers are being developed for the highest two spectroscopic windows (bands 9 and 10). Despite of the well known advantages of 2SB mixers over their DSB counterparts, they have not been implemented at the highest-frequency bands as the involved dimensions for some of the radio frequency components are prohibitory small. However, the current state-of-the-art micromachining technology has proved that the structures necessary for this development are attainable. Here we report the design, modeling, realization, and characterization of a 2SB mixer for band 9 of ALMA (600 to 720 GHz). At the heart of the mixer, two superconductor-insulator-superconductor (SIS) junctions are used as mixing elements. The constructed instrument presents an excellent performance as shown by two important figures of merit: noise temperature of the system and side band ratio, both of them within ALMA specifications

    Low-noise 0.8-0.96- and 0.96-1.12-THz superconductor-insulator-superconductor mixers for the Herschel Space Observatory

    Get PDF
    Heterodyne mixers incorporating Nb SIS junctions and NbTiN-SiO/sub 2/-Al microstrip tuning circuits offer the lowest reported receiver noise temperatures to date in the 0.8-0.96- and 0.96-1.12-THz frequency bands. In particular, improvements in the quality of the NbTiN ground plane of the SIS devices' on-chip microstrip tuning circuits have yielded significant improvements in the sensitivity of the 0.96-1.12-THz mixers relative to previously presented results. Additionally, an optimized RF design incorporating a reduced-height waveguide and suspended stripline RF choke filter offers significantly larger operating bandwidths than were obtained with mixers that incorporated full-height waveguides near 1 THz. Finally, the impact of junction current density and quality on the performance of the 0.8-0.96-THz mixers is discussed and compared with measured mixer sensitivities, as are the relative sensitivities of the 0.8-0.96- and 0.96-1.12-THz mixers
    corecore