7 research outputs found

    A Sparse Stress Model

    Full text link
    Force-directed layout methods constitute the most common approach to draw general graphs. Among them, stress minimization produces layouts of comparatively high quality but also imposes comparatively high computational demands. We propose a speed-up method based on the aggregation of terms in the objective function. It is akin to aggregate repulsion from far-away nodes during spring embedding but transfers the idea from the layout space into a preprocessing phase. An initial experimental study informs a method to select representatives, and subsequent more extensive experiments indicate that our method yields better approximations of minimum-stress layouts in less time than related methods.Comment: Appears in the Proceedings of the 24th International Symposium on Graph Drawing and Network Visualization (GD 2016

    Controlling the thermal environment of underground power cables adjacent to heating pipeline using the pavement surface radiation properties

    No full text
    This paper shows how the pavement surface radiation properties can be used to control the thermal environment of 110 kV underground cables in order to increase their ampacity. It is assumed that the ampacity is additionally affected by the cable bedding size and an underground heating pipeline. Thanks to an experimental apparatus, some useful data were collected for the validation of two different finite element method based models that predict the effect of the pavement surface radiation properties on the cable ampacity. The first model corresponds to the experimental apparatus and actual indoor conditions, while the second one corresponds to the theoretical case and assumed outdoor conditions (taking into account the thermal effects of solar radiation, cable bedding size, and heating pipeline). This paper examines two possible cases of outdoor conditions, one corresponding to summer period (the most unfavorable ambient conditions) and another one corresponding to winter period (the most common winter conditions in Serbia). This proposed new method is based on the experimental data and generalized using the finite element method in COMSOL. It is found that the ampacity of the considered 110 kV cable line can be increased up to 25.4 % for the most unfavorable ambient conditions and up to 8 % for the most common winter conditions. [Project of the Serbian Ministry of Education, Science and Technological Development, Grant no. TR33046

    Nonepitaxially grown nanopatterned Co–Pt alloys with out-of-plane magnetic anisotropy

    No full text
    International audienceA study on the structural and magnetic properties of 5-nm-thick Co–Pt alloy films grown on thermally oxidized SiO2/Si(100) substrates as well as on self-assemblies of spherical SiO2 particles with sizes down to 10 nm is presented. An out-of-plane easy axis of magnetization was stabilized at deposition temperatures as low as 250 °C in a broad composition range between 40 and 70 at. % of Pt. Owing to the low deposition temperatures, no chemical long-range order is found. Thus, the strong out-of-plane magnetic anisotropy is expected to be caused by anisotropic short-range order effects. The magnetic behavior of CoPt alloys with an equiatomic composition grown on arrays of SiO2particles was found to be similar to those on planar substrates. Structural investigations using high-resolution transmission electron microscopy revealed that a continuous CoPt layer has been formed, covering the particle tops and connecting them. The magnetic CoPt caps exhibit an out-of-plane easy axis for all particle sizes; however, no pronounced difference in coercive field with particle size was observed, which is associated with the specific morphology of the film structure
    corecore