393 research outputs found

    Translating Practical Knowledge: Three Theories of Portraiture from the Mid-Qing Dynasty

    Get PDF
    This essay discusses three Chinese treatises on portraiture techniques written during the 18th century and how the authors codified practical knowledge.Part of book or chapter of boo

    Translating Practical Knowledge: Three Theories of Portraiture from the Mid-Qing Dynasty

    Get PDF
    This essay discusses three Chinese treatises on portraiture techniques written during the 18th century and how the authors codified practical knowledge.Asian Studie

    Gathering of Six Robots on Anonymous Symmetric Rings

    Get PDF
    International audienceThe paper deals with a recent model of robot-based computing which makes use of identical, memoryless mobile robots placed on nodes of anonymous graphs. The robots operate in Look-Compute-Move cycles; in one cycle, a robot takes a snapshot of the current configuration (Look), takes a decision whether to stay idle or to move to one of its adjacent nodes (Compute), and in the latter case makes an instantaneous move to this neighbor (Move). Cycles are performed asynchronously for each robot. In particular, we consider the case of only six robots placed on the nodes of an anonymous ring in such a way they constitute a symmetric placement with respect to one single axis of symmetry, and we ask whether there exists a strategy that allows the robots to gather at one single node. This is in fact the first case left open after a series of papers [1,2,3,4] dealing with the gathering of oblivious robots on anonymous rings. As long as the gathering is feasible, we provide a new distributed approach that guarantees a positive answer to the posed question. Despite the very special case considered, the provided strategy turns out to be very interesting as it neither completely falls into symmetry-breaking nor into symmetry-preserving techniques

    Gathering Anonymous, Oblivious Robots on a Grid

    Full text link
    We consider a swarm of nn autonomous mobile robots, distributed on a 2-dimensional grid. A basic task for such a swarm is the gathering process: All robots have to gather at one (not predefined) place. A common local model for extremely simple robots is the following: The robots do not have a common compass, only have a constant viewing radius, are autonomous and indistinguishable, can move at most a constant distance in each step, cannot communicate, are oblivious and do not have flags or states. The only gathering algorithm under this robot model, with known runtime bounds, needs O(n2)\mathcal{O}(n^2) rounds and works in the Euclidean plane. The underlying time model for the algorithm is the fully synchronous FSYNC\mathcal{FSYNC} model. On the other side, in the case of the 2-dimensional grid, the only known gathering algorithms for the same time and a similar local model additionally require a constant memory, states and "flags" to communicate these states to neighbors in viewing range. They gather in time O(n)\mathcal{O}(n). In this paper we contribute the (to the best of our knowledge) first gathering algorithm on the grid that works under the same simple local model as the above mentioned Euclidean plane strategy, i.e., without memory (oblivious), "flags" and states. We prove its correctness and an O(n2)\mathcal{O}(n^2) time bound in the fully synchronous FSYNC\mathcal{FSYNC} time model. This time bound matches the time bound of the best known algorithm for the Euclidean plane mentioned above. We say gathering is done if all robots are located within a 2×22\times 2 square, because in FSYNC\mathcal{FSYNC} such configurations cannot be solved

    Rendezvous of Distance-aware Mobile Agents in Unknown Graphs

    Get PDF
    We study the problem of rendezvous of two mobile agents starting at distinct locations in an unknown graph. The agents have distinct labels and walk in synchronous steps. However the graph is unlabelled and the agents have no means of marking the nodes of the graph and cannot communicate with or see each other until they meet at a node. When the graph is very large we want the time to rendezvous to be independent of the graph size and to depend only on the initial distance between the agents and some local parameters such as the degree of the vertices, and the size of the agent's label. It is well known that even for simple graphs of degree Δ\Delta, the rendezvous time can be exponential in Δ\Delta in the worst case. In this paper, we introduce a new version of the rendezvous problem where the agents are equipped with a device that measures its distance to the other agent after every step. We show that these \emph{distance-aware} agents are able to rendezvous in any unknown graph, in time polynomial in all the local parameters such the degree of the nodes, the initial distance DD and the size of the smaller of the two agent labels l=min(l1,l2)l = \min(l_1, l_2). Our algorithm has a time complexity of O(Δ(D+logl))O(\Delta(D+\log{l})) and we show an almost matching lower bound of Ω(Δ(D+logl/logΔ))\Omega(\Delta(D+\log{l}/\log{\Delta})) on the time complexity of any rendezvous algorithm in our scenario. Further, this lower bound extends existing lower bounds for the general rendezvous problem without distance awareness

    Gathering in Dynamic Rings

    Full text link
    The gathering problem requires a set of mobile agents, arbitrarily positioned at different nodes of a network to group within finite time at the same location, not fixed in advanced. The extensive existing literature on this problem shares the same fundamental assumption: the topological structure does not change during the rendezvous or the gathering; this is true also for those investigations that consider faulty nodes. In other words, they only consider static graphs. In this paper we start the investigation of gathering in dynamic graphs, that is networks where the topology changes continuously and at unpredictable locations. We study the feasibility of gathering mobile agents, identical and without explicit communication capabilities, in a dynamic ring of anonymous nodes; the class of dynamics we consider is the classic 1-interval-connectivity. We focus on the impact that factors such as chirality (i.e., a common sense of orientation) and cross detection (i.e., the ability to detect, when traversing an edge, whether some agent is traversing it in the other direction), have on the solvability of the problem. We provide a complete characterization of the classes of initial configurations from which the gathering problem is solvable in presence and in absence of cross detection and of chirality. The feasibility results of the characterization are all constructive: we provide distributed algorithms that allow the agents to gather. In particular, the protocols for gathering with cross detection are time optimal. We also show that cross detection is a powerful computational element. We prove that, without chirality, knowledge of the ring size is strictly more powerful than knowledge of the number of agents; on the other hand, with chirality, knowledge of n can be substituted by knowledge of k, yielding the same classes of feasible initial configurations

    Self-stabilizing Deterministic Gathering

    Get PDF
    In this paper, we investigate the possibility to deterministically solve the gathering problem (GP) with weak robots (anonymous, autonomous, disoriented, deaf and dumb, and oblivious). We introduce strong multiplicity detection as the ability for the robots to detect the exact number of robots located at a given position. We show that with strong multiplicity detection, there exists a deterministic self-stabilizing algorithm solving GP for n robots if, and only if, n is odd

    Immunological changes in nestlings growing under predation risk

    Get PDF
    Predation is one of the most relevant selective forces in nature. However, the physiological mechanisms behind anti-predator strategies have been overlooked, despite their importance to understand predator-prey interactions. In this context, the immune system could be especially revealing due to its relationship with other critical functions and its ability to enhance prey's probabilities of survival to a predator's attack. Developing organisms (e.g. nestlings) are excellent models to study this topic because they suffer a high predation pressure while undergoing the majority of their development, which maximizes potential trade-offs between immunity and other biological functions. Using common blackbirds Turdus merula as model species, we experimentally investigated whether an elevated nest predation risk during the nestling period affects nestlings' immunity and its possible interactions with developmental conditions (i.e. body condition and growth). Experimental nestlings modified some components of their immunity, but only when considering body condition and growth rate, indicating a multifaceted immunological response to predation risk and an important mediator role of nestlings' developmental conditions. Predation risk induced a suppression of IgY but an increase in lymphocytes in nestlings with poor body condition. In addition, experimental but not control nestlings showed a negative correlation between growth and heterophils, demonstrating that nest predation risk can affect the interaction between growth and immunity. This study highlights the importance of immunity in anti-predator response in nestlings and shows the relevance of including physiological components to the study of predation risk.</p
    corecore