1,744 research outputs found

    A fast empirical method for galaxy shape measurements in weak lensing surveys

    Full text link
    We describe a simple and fast method to correct ellipticity measurements of galaxies from the distortion by the instrumental and atmospheric point spread function (PSF), in view of weak lensing shear measurements. The method performs a classification of galaxies and associated PSFs according to measured shape parameters, and corrects the measured galaxy ellipticites by querying a large lookup table (LUT), built by supervised learning. We have applied this new method to the GREAT10 image analysis challenge, and present in this paper a refined solution that obtains the competitive quality factor of Q = 104, without any shear power spectrum denoising or training. Of particular interest is the efficiency of the method, with a processing time below 3 ms per galaxy on an ordinary CPU.Comment: 8 pages, 6 figures. Metric values updated according to the final GREAT10 analysis software (Kitching et al. 2012, MNRAS 423, 3163-3208), no qualitative changes. Associated code available at http://lastro.epfl.ch/megalu

    Propagating Residual Biases in Cosmic Shear Power Spectra

    Get PDF
    In this paper we derive a full expression for the propagation of multiplicative and additive shape measurement biases into the cosmic shear power spectrum. In doing so we identify several new terms that are associated with selection effects, as well as cross-correlation terms between the multiplicative and additive biases and the shear field. The computation of the resulting bias in the shear power spectrum scales as the fifth power of the maximum multipole considered. Consequently the calculation is unfeasible for large l-modes, and the only tractable way to assess the full impact of shape measurement biases on cosmic shear power spectrum is through forward modelling of the effects. To linear order in bias parameters the shear power spectrum is only affected by the mean of the multiplicative bias field over a survey and the cross correlation between the additive bias field and the shear field. If the mean multiplicative bias is zero then second order convolutive terms are expected to be orders of magnitude smaller.Comment: 10 pages, accepted to the Open Journal of Astrophysic

    Alien Registration- Kitching, Charles M. (Camden, Knox County)

    Get PDF
    https://digitalmaine.com/alien_docs/15085/thumbnail.jp

    Propagating Residual Biases in Cosmic Shear Power Spectra

    Get PDF
    In this paper we derive a full expression for the propagation of multiplicative and additive shape measurement biases into the cosmic shear power spectrum. In doing so we identify several new terms that are associated with selection effects, as well as cross-correlation terms between the multiplicative and additive biases and the shear field. The computation of the resulting bias in the shear power spectrum scales as the fifth power of the maximum multipole considered. Consequently the calculation is unfeasible for large l-modes, and the only tractable way to assess the full impact of shape measurement biases on cosmic shear power spectrum is through forward modelling of the effects. To linear order in bias parameters the shear power spectrum is only affected by the mean of the multiplicative bias field over a survey and the cross correlation between the additive bias field and the shear field. If the mean multiplicative bias is zero then second order convolutive terms are expected to be orders of magnitude smaller

    Optimal strategies : theoretical approaches to the parametrization of the dark energy equation of state

    Full text link
    The absence of compelling theoretical model requires the parameterizing the dark energy to probe its properties. The parametrization of the equation of state of the dark energy is a common method. We explore the theoretical optimization of the parametrization based on the Fisher information matrix. As a suitable parametrization, it should be stable at high redshift and should produce the determinant of the Fisher matrix as large as possible. For the illustration, we propose one parametrization which can satisfy both criteria. By using the proper parametrization, we can improve the constraints on the dark energy even for the same data. We also show the weakness of the so-called principal component analysis method.Comment: 7pages, 11 figures, 2 tables, To match the version accepted by AS

    First record of Triassic Rhynchosauria (Reptilia: Diapsida) from the Lower Zambezi Valley, Zimbabwe

    Get PDF
    True rhynchosaurids are described from Zimbabwe for the first time. The fossils occur as partially associated skeletons and scattered isolates in upward-fining, micaceous fluvial sandstones of the Pebbly Arkose Formation (late Triassic) in the Western Cabora Bassa Basin, Lower Zambezi Valley. On the grounds that the dentary of the Zimbabwean form possesses a row of small, conical lingual teeth in addition to a palisade row of penicillate teeth on the occlusal surface, it is concluded that the taxon present is Hyperodapedon sp., and that it is closely related to a rhynchosaurid described from Tanzania. One bone identified as a prosauropod dinosaurian femur was found associated with the Zimbabwean rhynchosaurids. The late Triassic age suggested by the presence of advanced rhynchosaurids is supported by the occurrence of the typical Triassic fossil plant genus Dicroidium, and by the general stratigraphy of the beds which contain the fossils (i.e. the fossil-bearing beds are underlain by beds of mid-Triassic age or younger, and are overlain by beds of latest Triassic or early Jurassic age
    • …
    corecore