7 research outputs found

    Octreotide long-acting repeatable in the treatment of neuroendocrine tumors: patient selection and perspectives

    No full text
    Hanford Yau,1 Mustafa Kinaan,2 Suzanne L Quinn,3 Andreas G Moraitis3 1Division of Endocrinology, Diabetes, and Metabolism, University of California, San Francisco (Fresno Division), Fresno, CA, USA; 2Division of Internal Medicine, University of Central Florida College of Medicine, Orlando, FL, USA; 3Division of Endocrinology, Diabetes, and Metabolism, Orlando VA Medical Center, Orlando, FL, USA Abstract: Over the past three decades, the incidence and prevalence of neuroendocrine tumors have gradually increased. Due to the slow-growing nature of these tumors, most cases are diagnosed at advanced stages. Prognosis and survival are associated with location of primary lesion, biochemical functional status, differentiation, initial staging, and response to therapy. Octreotide, the first synthetic somatostatin analog, was initially used for the management of gastrointestinal symptoms associated with functional carcinoid tumors. Its commercial development over time led to long-acting repeatable octreotide acetate, a long-acting version that provided greater administration convenience. Recent research demonstrates that octreotide’s efficacy has evolved beyond symptomatic management to targeted therapy with antitumoral effects. This review examines the history and development of octreotide, provides a synopsis on the classification, grading, and staging of neuroendocrine tumors, and reviews the evidence of long-acting repeatable octreotide acetate as monotherapy and in combination with other treatment modalities in the management of non-pituitary neuroendocrine tumors with special attention to recent high-quality Phase III trials. Keywords: carcinoid, everolimus, neuroendocrine tumor, octreotide LAR, somatostatin analog, ITMO, NETTER-1, PROMID, RADIANT-

    Comparison of the structural motifs and packing arrangements of six novel derivatives and one polymorph of 2-(1-phenyl-1H-1,2,3-triazol-4-yl)pyridine

    No full text
    The crystal structures of a new polymorph and seven new derivatives of 2-(1-phenyl-1H-1,2,3-triazol-4-yl)pyridine have been characterized and examined along with three structures from the literature to identify trends in their intermolecular contact patterns and packing arrangements in order to develop an insight into the crystallization behaviour of this class of compound. Seven unique C-H ··· X contacts were identified in the structures and three of these are present in four or more structures, indicating that these are reliable supramolecular synthons. Analysis of the packing arrangements of the molecules using XPac identified two closely related supramolecular constructs that are present in eight of the 11 structures; in all cases, the structures feature at least one of the three most common intermolecular contacts, suggesting a clear relationship between the intermolecular contacts and the packing arrangements of the structures. Both the intermolecular contacts and packing arrangements appear to be remarkably consistent between structures featuring different functional groups, with the expected exception of the carboxylic acid derivative 4-(4-(pyridin-2-yl)-1H-1,2,3-triazol-1-yl) benzoic acid (L11), where the introduction of a strong hydrogen-bonding group results in a markedly different supramolecular structure being adopted. The occurrence of these structural features has been compared with the packing efficiency of the structures and their melting points in order to assess the relative favourability of the supramolecular structural features in stabilizing the crystal structures

    Rutaecarpine ameliorates hyperlipidemia and hyperglycemia in fat-fed, streptozotocin-treated rats via regulating the IRS-1/PI3K/Akt and AMPK/ACC2 signaling pathways.

    No full text
    AIM: We have shown that rutaecarpine extracted from the dried fruit of Chinese herb Evodia rutaecarpa (Juss) Benth (Wu Zhu Yu) promotes glucose consumption and anti-inflammatory cytokine expression in insulin-resistant primary skeletal muscle cells. In this study we investigated whether rutaecarpine ameliorated the obesity profiles, lipid abnormality, glucose metabolism and insulin resistance in rat model of hyperlipidemia and hyperglycemia. METHODS: Rats fed on a high-fat diet for 8 weeks, followed by injection of streptozotocin (30 mg/kg, ip) to induce hyperlipidemia and hyperglycemia. One week after streptozotocin injection, the fat-fed, streptozotocin-treated rats were orally treated with rutaecarpine (25 mg·kg(−1)·d(−1)) or a positive control drug metformin (250 mg·kg(−1)·d(−1)) for 7 weeks. The body weight, visceral fat, blood lipid profiles and glucose levels, insulin sensitivity were measured. Serum levels of inflammatory cytokines were analyzed. IRS-1 and Akt/PKB phosphorylation, PI3K and NF-κB protein levels in liver tissues were assessed; pathological changes of livers and pancreases were examined. Glucose uptake and AMPK/ACC2 phosphorylation were studied in cultured rat skeletal muscle cells in vitro. RESULTS: Administration of rutaecarpine or metformin significantly decreased obesity, visceral fat accumulation, water consumption, and serum TC, TG and LDL-cholesterol levels in fat-fed, streptozotocin-treated rats. The two drugs also attenuated hyperglycemia and enhanced insulin sensitivity. Moreover, the two drugs significantly decreased NF-κB protein levels in liver tissues and plasma TNF-α, IL-6, CRP and MCP-1 levels, and ameliorated the pathological changes in livers and pancreases. In addition, the two drugs increased PI3K p85 subunit levels and Akt/PKB phosphorylation, but decreased IRS-1 phosphorylation in liver tissues. Treatment of cultured skeletal muscle cells with rutaecarpine (20–180 μmol/L) or metformin (20 μmol/L) promoted the phosphorylation of AMPK and ACC2, and increased glucose uptake. CONCLUSION: Rutaecarpine ameliorates hyperlipidemia and hyperglycemia in fat-fed, streptozotocin-treated rats via regulating IRS-1/PI3K/Akt signaling pathway in liver and AMPK/ACC2 signaling pathway in skeletal muscles
    corecore