41 research outputs found

    Effect of surfactant replacement on Pneumocystis carinii pneumonia in rats

    Get PDF
    The effect of intratracheal surfactant instillation on pulmonary function in rats with Pneumocystis carinii pneumonia (PCP) was investigated. In those animals which developed PCP with severe respiratory failure after administration of cortisone acetate s. c. over 8-12 weeks, pulmonary function was improved by surfactant instillation. PaO2 values 30 min after surfactant instillation were significantly higher compared to pretreatment values and also compared to PaO2 values of rats 30 min after receiving saline (482.9 mmHg±44.7, 170.7 mmHg ±39.3 and 67.2 mmHg±17.4, respectively). Histological examination showed that alveoli of rats with PCP which received no exogenous surfactant are filled with foamy edema, whereas after exogenous surfactant alveoli are stabilized and well-aerated. These results indicate that exogenous surfactant may help patients with severe PCP to overcome an acute stage of respiratory distress

    A conceptual framework to support decision-making in remanufacturing engineering processes

    No full text
    Remanufacturing is a promising industrial activity where products and materials are upgraded and considered for at least another life cycle. In addition to being an environmentally conscious action, remanufacturing has the potential to support circular economy within which significant profit opportunities exist. However, high levels of uncertainty can be experienced during, before and after remanufacturing. This makes its planning stochastic and hard to control. As each component or product is different, with for example high levels of geometrical variation; they may require a unique strategy and process planning. To aid this process, a conceptual decision making framework to support process planning of remanufacturing engineering processes (REP) is proposed. Quality Function Deployment (QFD) method is employed to support the proposed framework (hereafter referred to as REP-QFD). The application of the QFD based methods rely heavily on inputs from experts, in the form of their experience and knowledge. The paper considers how the proposed framework can be engineered with the aim to substantially reduce this reliance on experts and their expertise. The term “Engineering” here reflects the study’s focus on technical decisions at the reconditioning stage. To further support the framework a taxonomy of metal manufacturing/remanufacturing processes is also developed
    corecore