1,346 research outputs found
The cosmic evolution of radio-AGN feedback to z=1
This paper presents the first measurement of the radio luminosity function of
'jet-mode' (radiatively-inefficient) radio-AGN out to z=1, in order to
investigate the cosmic evolution of radio-AGN feedback. Eight radio source
samples are combined to produce a catalogue of 211 radio-loud AGN with
0.5<z<1.0, which are spectroscopically classified into jet-mode and
radiative-mode (radiatively-efficient) AGN classes. Comparing with large
samples of local radio-AGN from the Sloan Digital Sky Survey, the cosmic
evolution of the radio luminosity function of each radio-AGN class is
independently derived. Radiative-mode radio-AGN show an order of magnitude
increase in space density out to z~1 at all luminosities, consistent with these
AGN being fuelled by cold gas. In contrast, the space density of jet-mode
radio-AGN decreases with increasing redshift at low radio luminosities (L_1.4 <
1e24 W/Hz) but increases at higher radio luminosities. Simple models are
developed to explain the observed evolution. In the best-fitting models, the
characteristic space density of jet-mode AGN declines with redshift in
accordance with the declining space density of massive quiescent galaxies,
which fuel them via cooling of gas in their hot haloes. A time delay of 1.5-2
Gyr may be present between the quenching of star formation and the onset of
jet-mode radio-AGN activity. The behaviour at higher radio luminosities can be
explained either by an increasing characteristic luminosity of jet-mode
radio-AGN activity with redshift (roughly as (1+z) cubed) or if the jet-mode
radio-AGN population also includes some contribution of cold-gas-fuelled
sources seen at a time when their accretion rate was low. Higher redshifts
measurements would distinguish between these possibilities.Comment: Accepted for publication in MNRA
Structural Causes of Right Bundle Branch Block—Time for a Closer Look?
Right bundle branch block is an electrocardiographic phenomenon with specific criteria
The accessory papillary muscle with inferior J-waves - peculiarity or hidden danger?
Originally described in 1953, today the so-called J-wave is the source of much controversy. As a marker of so-called "early repolarization", this variant has been regarded as a totally benign variant since the 1960's. However, since then a wealth of data have indicated that the J-wave may be a marker of a highly arrhythmogenic substrate with a resultant high risk of sudden cardiac death
Assessment of final year medical students in a simulated ward::developing content validity for an assessment instrument
Performance assessment is becoming increasingly important in both undergraduate and postgraduate assessment. At present, the tools used to assess a medical student’s performance evaluate only their care for one patient at a time. The development of the simulated ward has provided an opportunity to assess how a final year medical student would perform caring for a variety of patients simultaneously in a realistic ward environment, without risk to patients. This paper describes the development of valid assessment criteria using a modified Delphi method
Generation of seismic waves by explosions in prestressed media
The mechanisms of generation of seismic waves by an explosion in prestressed media are studied using both field seismograms and controlled laboratory experiments. LRSM seismograms from the underground nuclear explosion BILBY are analyzed to determine the source parameters from the radiated Love and Rayleigh waves. From the normalized amplitudes of Rayleigh waves as well as the Love-Rayleigh amplitude ratios, a composite source consisting of an isotropic explosion and a double couple is synthesized for the explosion and the associated tectonic strain release. From BILBY and other explosions studied by similar techniques, it is found that the tectonic strain energy release strongly depends on the medium properties in the immediate vicinity of the explosion. For “harder” media (such as granite) the tectonic strain energy release and the relative amplitude of Love waves are significantly higher than for softer media such as alluvium. Source-time functions of Love waves associated with the explosions are closer to time functions of earthquakes than to those of explosions.
The mechanisms of the pre-existing strain energy release by explosive sources are studied in two separate laboratory experiments. In a one-dimensional experiment where an explosive source is detonated in a rod stressed in torsion, the S-wave amplitudes are found to be linearly proportional to prestrain. In the second experiment, radiation of seismic waves and the near-source phenomena of explosive sources in prestressed plates are studied by photoelastic as well as strain gauge observations. The generation of S-waves is greatly enhanced by the prestress condition. It is found that extended cracking (faulting) occurs along directions determined by the prestress field. The transverse (SH) waves are generated primarily by the relaxation of the stress field along these cracks. The explosion-generated cavity alone could not account for the radiated transverse seismic energy
Dynamic Photoelastic Studies of P and S Wave Propagation in Prestressed Media
The occasional existence of very pronounced, anomalous, horizontally polarized seismic waves from underground nuclear bomb blasts has been reported by several investigators. In order to further understanding of this phenomenon and the processes of mechanical radiation from explosions, particularly in prestressed media, a model study has been undertaken. Experimental apparatus has been developed which permits the generation and propagation of body waves from explosions in transparent plate models prestressed to various two-dimensional stress configurations. High-speed framing camera sequences are presented showing the explosion process and the resulting plate compressional and shear wave propagation in prestressed models. These are compared to theoretical calculations of isochromatic and π/4 isoclinic fringe patterns associated with the wave propagation in stress-free plates and plates prestressed in tension and shear. The following distinctive optical phenomena were predicted theoretically and observed in the high-speed photoelastic patterns: a π/4 discontinuity between P and S wave isoclinics for the unstressed case; a tendency for the isoclinics to broaden and envelope the isochromatics in regions where the P and S waves are superimposed; development of serrations in the dynamic isoclinics in the presence of a prestressing field (yielding a pseudo-isochromatic appearance to isoclinics when viewed monochromatically); and finally, a general similarity between the dynamic optical effects in media under tensile and shear prestress
Intravenous immunoglobulin (IVIg) dampens neuronal toll-like receptor-mediated responses in ischemia
10.1186/s12974-015-0294-8Journal of Neuroinflammation12
- …