2,165 research outputs found

    BIOCHEMICAL CHANGES DURING GROWTH AND ENCYSTMENT OF THE CELLULAR SLIME MOLD POLYSPHONDYLIUM PALLIDUM

    Get PDF
    The growth of the cellular slime mold, Polysphondylium pallidum, was studied on a semidefined medium in shaken suspension. When the medium contained large quantities of particulate material, growth was more rapid and the cellular size and protein content were smaller than when growth occurred on a medium containing less particulate material. The cellular levels of DNA, RNA, and protein; of lysosomal enzymes (acid phosphatase, acid proteinase); and of peroxisomal enzymes (catalase) were assayed during growth and the subsequent stationary phase that led eventually to encystment. Only DNA remained at a constant cellular level. Encystment of exponentially growing cells could also be initiated by washing them and introducing them into a soluble peptone medium. The rate of encystment was proportional to the osmolarity of this medium. The encystment process was followed with respect to the cellular levels of DNA, RNA, protein, carbohydrates, acid phosphatase, acid β-N-Ac-glucosaminidase, and catalase. The most dramatic change occurred in the cellular cellulose content, which increased by at least an order of magnitude by the time encystment was morphologically complete. It was concluded that the encystment of this slime mold in suspension exhibits a number of biochemical similarities to the development of this and other cellular slime molds on a surface

    PHAGOCYTOSIS BY THE CELLULAR SLIME MOLD POLYSPHONDYLIUM PALLIDUM DURING GROWTH AND DEVELOPMENT

    Get PDF
    The phagocytic ability of amoebae of the cellular slime mold Polysphondylium pallidum, grown in shaken suspension, was examined. An established quantitative assay of the uptake of polystyrene (PS) beads was shown to be valid for this organism. The kinetics of phagocytosis were determined, and estimates of the concentration of PS beads necessary to achieve half-maximal phagocytic velocity (Kp), as well as the maximal velocity itself (Vpmax), were made. Comparison with previously published data on Acanthamoeba and guinea pig leukocytes suggested that the P. pallidum amoebae had the lowest Kp, while the leukocytes had the highest Vpmax. Beads approximately 1 µm in diameter appeared to be the optimal size for ingestion. Simultaneously with phagocytosis, comparable numbers of beads accumulated at the cell surface; this accumulation did not occur when phagocytosis was inhibited. Phagocytosis was depressed by protein in the medium, by increased osmolarity, and by inhibitors of aerobic metabolism. Starvation-initiated development, leading to encystment, was shown to affect the capacity of the cells to phagocytize, mainly by progressively decreasing the time span over which the cells ingested particles at a constant initial rate

    METABOLIC AND MORPHOLOGICAL OBSERVATIONS ON THE EFFECT OF SURFACE-ACTIVE AGENTS ON LEUKOCYTES

    Get PDF
    Morphological and metabolic observations have been made on the effects of endotoxin, deoxycholate, and digitonin (at less than 50 µg/ml) on polymorphonuclear leukocytes and mononuclear cells. The agents stimulate the respiration and glucose oxidation of these cells in a manner similar to that seen during phagocytosis. Electron microscopy revealed no morphological changes with the first two agents, but dramatic membrane changes were seen in the case of digitonin. Here tubular projections of characteristic size and shape formed on and split off the membrane. All the agents stimulated uptake of inulin, but efforts to demonstrate increased pinocytosis by electron microscopy have not so far succeeded, probably due to limitations in present experimental techniques

    IODINATING ABILITY OF VARIOUS LEUKOCYTES AND THEIR BACTERICIDAL ACTIVITY

    Get PDF
    A rapid method that employs monolayers of different phagocytic cells, primarily from guinea pigs and mice, has allowed a kinetic determination of (a) ingestion by these cells of labeled particles, (b) fixation of 131I and (c) microbicidal activity in the cells after periods as short as 5' of exposure of bacteria to phagocytes. Phagocytes so examined included polymorphonuclear leukocytes (PMN) elicited into the peritoneal cavity, elicited peritoneal mononuclear cells (monocytes) (MN), and peritoneal macrophages (MAC) obtained simply by lavage. Circulating PMN from normal human subjects and from children afflicted with chronic granulomatous disease were also studied. The potential for generation of H2O2 (a key component of the iodinating system) of all the normal cells studied, gauged by their content of cyanide-insensitive NADH oxidase, seemed comparable. Peroxidase levels varied widely, and were highest in PMN and almost undetectable in MAC. Catalase was at negligible levels in all the cell types obtained from mice. The fixation of 131I by phagocytes ingesting 14C-labeled dead tubercle bacilli appeared to be primarily a function of the cellular peroxidase content. Thus, mouse macrophages, with virtually no peroxidase, displayed no fixation of iodide. PMN proved far more able to fix 131I during phagocytosis than did MN. In experiments comparing PMN from normal human subjects and from children with chronic granulomatous disease (CGD), a sex-linked condition characterized by a deficiency of H2O2 production during phagocytosis and low microbicidal activity, the iodination ratio of CGD cells was dramatically less than that of normal PMN (by about two orders of magnitude). Capacity for iodination was correlated with bactericidal activity toward E. coli. At low bacterial loads (ca. 5:1), phagocytes killed efficiently, and little discrepancy in ability among cell types was apparent. Under the stress of higher loads of 14C-labeled E. coli (ca. 100:1), differences in bactericidal activity were exaggerated, and a substantial disparity between MN and PMN was observed in favor of the latter. The hierarchy for killing efficiencies therefore agreed with that for iodination, with one notable exception: mouse MAC were consistently competent in their killing activity, more so than MN, even though they virtually lack peroxidase and the ability to iodinate ingested bacteria

    CYTOCHEMICAL LOCALIZATION OF ENDOGENOUS PEROXIDASE IN THYROID FOLLICULAR CELLS

    Get PDF
    Endogenous peroxidase activity in rat thyroid follicular cells is demonstrated cytochemically. Following perfusion fixation of the thyroid gland, small blocks of tissue are incubated in a medium containing substrate for peroxidase, before being postfixed in osmium tetroxide, and processed for electron microscopy. Peroxidase activity is found in thyroid follicular cells in the following sites: (a) the perinuclear cisternae, (b) the cisternae of the endoplasmic reticulum, (c) the inner few lamellae of the Golgi complex, (d) within vesicles, particularly those found apically, and (e) associated with the external surfaces of the microvilli that project apically from the cell into the colloid. In keeping with the radioautographic evidence of others and the postulated role of thyroid peroxidase in iodination, it is suggested that the microvillous apical cell border is the major site where iodination occurs. However, that apical vesicles also play a role in iodination cannot be excluded. The in vitro effect of cyanide, aminotriazole, and thiourea is also discussed

    AN ULTRASTRUCTURAL STUDY OF GLOMERULAR PERMEABILITY IN AMINONUCLEOSIDE NEPHROSIS USING CATALASE AS A TRACER PROTEIN

    Get PDF
    Beef liver catalase (mol wt 240,000) was injected intravenously into normal rats and rats made nephrotic with aminonucleoside of puromycin. The localization of the tracer in the kidneys was then studied by ultrastructural cytochemistry, 3 min–12 hr after injection. Passage of catalase into the urinary space in normal rats was restricted by the basement membrane and by the epithelial slit pore. Nephrotic glomeruli showed extensive fusion of foot processes and formation of pockets and vacuoles in the fused epithelium; within 3 min after injection, catalase appeared in basal pockets, epithelial vacuoles, and the urinary space. Residual slit pores and close junctions in fused epithelium were impermeable to catalase. These studies indicate that alteration of the epithelial cells and basement membrane is responsible for protein leakage in aminonucleoside nephrosis

    Changes in cell surface and cortical cytoplasmic organization during early embryogenesis in the preimplantation mouse embryo

    Get PDF
    Membrane topography and organization of cortical cytoskeletal elements and organelles during early embryogenesis of the mouse have been studied by transmission and scanning electron microscopy with improved cellular preservation. At the four- and early eight-cell stages, blastomeres are round, and scanning electron microscopy shows a uniform distribution of microvilli over the cell surface. At the onset of morphogenesis, a reorganization of the blastomere surface is observed in which microvilli becomes restricted to an apical region and the basal zone of intercellular contact. As the blastomeres spread on each other during compaction, many microvilli remain in the basal region of imminent cell-cell contacts, but few are present where the cells have completed spreading on each other. Microvilli on the surface of these embryos contain linear arrays of microfilaments with lateral cross bridges. Microtubules and mitochondria become localized beneath the apposed cell membranes during compaction. Arrays of cortical microtubules are aligned parallel to regions of apposed membranes. During cytokinesis, microtubules become redistributed in the region of the mitotic spindle, and fewer microvilli are present on most of the cell surface. The cell surface and cortical changes initiated during compaction are the first manifestations of cell polarity in embryogenesis. These and previous findings are interpreted as evidence that cell surface changes associated with trophoblast development appear as early as the eight-cell stage. Our observations suggest that morphogenesis involves the activation of a developmental program which coordinately controls cortical cytoplasmic and cell surface organization

    GLOMERULAR PERMEABILITY : ULTRASTRUCTURAL STUDIES IN EXPERIMENTAL NEPHROSIS USING HORSERADISH PEROXIDASE AS A TRACER

    Get PDF
    Wistar/Furth rats were made nephrotic by daily administration of amino-nucleoside of puromycin, and the ultrastructural localization of horseradish peroxidase (mol wt 40,000) in the renal glomerulus was studied from 1 min to 20 hr after intravenous injection of the tracer. In control rats, peroxidase permeated the endothelial fenestrae, the basement membrane, and the epithelial slits, and was present in tubular lumina. Nephrotic glomeruli showed relatively normal basement membranes, extensive fusion of foot processes with formation of "close" intercellular junctions, and large vacuoles and pockets in epithelial cells. On serial sections some of the epithelial vacuoles communicated on one side with the extracellular space overlying basement membrane, and on the other side with the urinary space. In nephrotic animals, peroxidase permeated the basement membrane and the close junctions, and was present in many of the vacuoles and pockets as early as 1 min after injection. Only small numbers of peroxidase-positive vacuoles remained in. epithelial cells 1 hr or more after injection of the tracer. It is suggested that the epithelial pockets and vacuoles form pathways across which leaking proteins can be transferred across the epithelium into the urinary space. Epithelial vacuoles may also be absorption droplets designed to "conserve" leaking proteins, but this function was not prominent in our experiments with peroxidase

    AN ULTRASTRUCTURAL STUDY OF GLOMERULAR PERMEABILITY USING CATALASE AND PEROXIDASE AS TRACER PROTEINS

    Get PDF
    Mice were injected intravenously with beef liver catalase (mol wt 240,000) and very small doses of horseradish peroxidase (mol wt 40,000) and the site of localization of these enzymes in the kidney was studied by ultrastructural cytochemistry. 1 min after injection, catalase was present in glomerular capillary lumina and there was minimal permeation of the basement membrane. After 5–180 min, staining of the basement membrane increased progressively but was usually less than that in capillary lumina. At all time intervals the inner (sub-endothelial) layer of the basement membrane contained more reaction product than the lamina densa and the outer (subepithelial) layer. Catalase permeated the entire thickness of the basement membrane and extended up to the slit pore but not beyond the level of the slit diaphragm and was not seen in the urinary space or tubular lumina. Horseradish peroxidase permeated the whole thickness of the basement membrane within 2 min after injection; however, gradients of staining from the inner to outer layers of the basement membrane were frequently seen. The findings with both enzymes indicate that (a) the basement membrane restricts the passage of proteins over a wide range of molecular size with increasing impediment for larger molecules and (b) the slit pore functions as an additional barrier for molecules that cross the basement membrane
    • …
    corecore