748 research outputs found

    Ultra-Sensitive Hot-Electron Nanobolometers for Terahertz Astrophysics

    Full text link
    The background-limited spectral imaging of the early Universe requires spaceborne terahertz (THz) detectors with the sensitivity 2-3 orders of magnitude better than that of the state-of-the-art bolometers. To realize this sensitivity without sacrificing operating speed, novel detector designs should combine an ultrasmall heat capacity of a sensor with its unique thermal isolation. Quantum effects in thermal transport at nanoscale put strong limitations on the further improvement of traditional membrane-supported bolometers. Here we demonstrate an innovative approach by developing superconducting hot-electron nanobolometers in which the electrons are cooled only due to a weak electron-phonon interaction. At T<0.1K, the electron-phonon thermal conductance in these nanodevices becomes less than one percent of the quantum of thermal conductance. The hot-electron nanobolometers, sufficiently sensitive for registering single THz photons, are very promising for submillimeter astronomy and other applications based on quantum calorimetry and photon counting.Comment: 19 pages, 3 color figure

    The low-frequency response in the surface superconducting state of ZrB12_{12} single crystal}

    Full text link
    The large nonlinear response of a single crystal ZrB12_{12} to an ac field (frequency 40 - 2500 Hz) for H0>Hc2H_0>H_{c2} has been observed. Direct measurements of the ac wave form and the exact numerical solution of the Ginzburg-Landau equations, as well as phenomenological relaxation equation, permit the study of the surface superconducting states dynamics. It is shown, that the low frequency response is defined by transitions between the metastable superconducting states under the action of an ac field. The relaxation rate which determines such transitions dynamics, is found.Comment: 7 pages, 11 figure

    Energy resolution of terahertz single-photon-sensitive bolometric detectors

    Get PDF
    We report measurements of the energy resolution of ultra-sensitive superconducting bolometric detectors. The device is a superconducting titanium nanobridge with niobium contacts. A fast microwave pulse is used to simulate a single higher-frequency photon, where the absorbed energy of the pulse is equal to the photon energy. This technique allows precise calibration of the input coupling and avoids problems with unwanted background photons. Present devices have an intrinsic full-width at half-maximum energy resolution of approximately 23 terahertz, near the predicted value due to intrinsic thermal fluctuation noise.Comment: 11 pages (double-spaced), 5 figures; minor revision

    Room Temperature, Quantum-Limited THz Heterodyne Detection? Not Yet

    Get PDF
    In their article, Wang et al. [1] report a new scheme for THz heterodyne detection using a laser-driven LTG-GaAs photomixer [2, 3] and make the impressive claim of achieving near quantum-limited sensitivity at room temperature. Unfortunately, their experimental methodology is incorrect, and furthermore the paper provides no information on the mixer conversion loss, an important quantity that could readily have been measured and reported as a consistency check. The paper thus offers no reliable experimental evidence that substantiates the claimed sensitivities. To the contrary, the very high value reported for their photomixer impedance strongly suggests that the conversion loss is quite poor and that the actual sensitivity is far worse than claimed

    Genetic correlates of longevity and selected age-related phenotypes: a genome-wide association study in the Framingham Study

    Get PDF
    BACKGROUND: Family studies and heritability estimates provide evidence for a genetic contribution to variation in the human life span. METHODS:We conducted a genome wide association study (Affymetrix 100K SNP GeneChip) for longevity-related traits in a community-based sample. We report on 5 longevity and aging traits in up to 1345 Framingham Study participants from 330 families. Multivariable-adjusted residuals were computed using appropriate models (Cox proportional hazards, logistic, or linear regression) and the residuals from these models were used to test for association with qualifying SNPs (70, 987 autosomal SNPs with genotypic call rate [greater than or equal to]80%, minor allele frequency [greater than or equal to]10%, Hardy-Weinberg test p [greater than or equal to] 0.001).RESULTS:In family-based association test (FBAT) models, 8 SNPs in two regions approximately 500 kb apart on chromosome 1 (physical positions 73,091,610 and 73, 527,652) were associated with age at death (p-value < 10-5). The two sets of SNPs were in high linkage disequilibrium (minimum r2 = 0.58). The top 30 SNPs for generalized estimating equation (GEE) tests of association with age at death included rs10507486 (p = 0.0001) and rs4943794 (p = 0.0002), SNPs intronic to FOXO1A, a gene implicated in lifespan extension in animal models. FBAT models identified 7 SNPs and GEE models identified 9 SNPs associated with both age at death and morbidity-free survival at age 65 including rs2374983 near PON1. In the analysis of selected candidate genes, SNP associations (FBAT or GEE p-value < 0.01) were identified for age at death in or near the following genes: FOXO1A, GAPDH, KL, LEPR, PON1, PSEN1, SOD2, and WRN. Top ranked SNP associations in the GEE model for age at natural menopause included rs6910534 (p = 0.00003) near FOXO3a and rs3751591 (p = 0.00006) in CYP19A1. Results of all longevity phenotype-genotype associations for all autosomal SNPs are web posted at http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?id=phs000007. CONCLUSION: Longevity and aging traits are associated with SNPs on the Affymetrix 100K GeneChip. None of the associations achieved genome-wide significance. These data generate hypotheses and serve as a resource for replication as more genes and biologic pathways are proposed as contributing to longevity and healthy aging
    • …
    corecore