21,866 research outputs found
Broad-line region structure and kinematics in the radio galaxy 3C 120
Broad emission lines originate in the surroundings of supermassive black
holes in the centers of active galactic nuclei (AGN). One method to investigate
the extent, structure, and kinematics of the BLR is to study the continuum and
line profile variability in AGN. We selected the radio-loud Seyfert 1 galaxy 3C
120 as a target for this study. We took spectra with a high signal-to-noise
ratio of 3C 120 with the 9.2m Hobby-Eberly Telescope between Sept. 2008 and
March 2009. In parallel, we photometrically monitored the continuum flux at the
Wise observatory. We analyzed the continuum and line profile variations in
detail (1D and 2D reverberation mapping) and modeled the geometry of the
line-emitting regions based on the line profiles. We show that the BLR in 3C
120 is stratified with respect to the distance of the line-emitting regions
from the center with respect to the line widths (FWHM) of the rms profiles and
with respect to the variability amplitude of the emission lines. The emission
line wings of H{\alpha} and H{\beta} respond much faster than their central
region. This is explained by accretion disk models. In addition, these lines
show a stronger response in the red wings. However, the velocity-delay maps of
the helium lines show a stronger response in the blue wing. Furthermore, the
HeII{\lambda}4686 line responds faster in the blue wing in contradiction to
observations made one and a half years later when the galaxy was in a lower
state. The faster response in the blue wing is an indication for central
outflow motions when this galaxy was in a bright state during our observations.
The vertical BLR structure in 3C 120 coincides with that of other AGN. We
confirm the general trend: the emission lines of narrow line AGN originate at
larger distances from the midplane than AGN with broader emission lines.Comment: 18 pages, 25 figures, Astronomy & Astrophysics in pres
Circumstellar Disks revealed by / Flux Variation Gradients
The variability of young stellar objects (YSO) changes their brightness and
color preventing a proper classification in traditional color-color and color
magnitude diagrams. We have explored the feasibility of the flux variation
gradient (FVG) method for YSOs, using and band monitoring data of the
star forming region RCW\,38 obtained at the University Observatory Bochum in
Chile. Simultaneous multi-epoch flux measurements follow a linear relation
for almost all YSOs with large variability
amplitude. The slope gives the mean color temperature of
the varying component. Because is hotter than the dust sublimation
temperature, we have tentatively assigned it to stellar variations. If the
gradient does not meet the origin of the flux-flux diagram, an additional non-
or less-varying component may be required. If the variability amplitude is
larger at the shorter wavelength, e.g. , this component is cooler
than the star (e.g. a circumstellar disk); vice versa, if , the
component is hotter like a scattering halo or even a companion star. We here
present examples of two YSOs, where the FVG implies the presence of a
circumstellar disk; this finding is consistent with additional data at and
. One YSO shows a clear -band excess in the color-color diagram,
while the significance of a -excess in the other YSO depends on the
measurement epoch. Disentangling the contributions of star and disk it turns
out that the two YSOs have huge variability amplitudes (\,mag). The
FVG analysis is a powerful complementary tool to analyze the varying
components of YSOs and worth further exploration of monitoring data at other
wavelengths.Comment: 5 pages, 5 figures, accepted for publication in Astronomy and
Astrophysic
The suppression of superconductivity in MgCNi3 by Ni-site doping
The effects of partial substitution of Cu and Co for Ni in the intermetallic
perovskite superconductor MgCNi3 are reported. Calculation of the expected
electronic density of states suggests that electron (Cu) and hole (Co) doping
should have different effects. For MgCNi3-xCux, solubility of Cu is limited to
approximately 3% (x = 0.1), and Tc decreases systematically from 7K to 6K. For
MgCNi3-xCox, solubility of Co is much more extensive, but bulk
superconductivity disappears for Co doping of 1% (x = 0.03). No signature of
long range magnetic ordering is observed in the magnetic susceptibility of the
Co doped material.Comment: submitted, Solid State Communication
Photometric reverberation mapping of 3C120
We present the results of a five month monitoring campaign of the local
active galactic nuclei (AGN) 3C120. Observations with a median sampling of two
days were conducted with the robotic 15cm telescope VYSOS-6 located near Cerro
Armazones in Chile. Broad band (B,V) and narrow band (NB) filters were used in
order to measure fluxes of the AGN and the H_beta broad line region (BLR)
emission line. The NB flux is constituted by about 50% continuum and 50% H_beta
emission line. To disentangle line and continuum flux, a synthetic H_beta light
curve was created by subtracting a scaled V-band light curve from the NB light
curve. Here we show that the H_beta emission line responds to continuum
variations with a rest frame lag of 23.6 +/- 1.69 days. We estimate a virial
mass of the central black hole M_BH = 57 +/- 27 * 10^6 solar masses, by
combining the obtained lag with the velocity dispersion of a single
contemporaneous spectrum. Using the flux variation gradient (FVG) method, we
determined the host galaxy subtracted rest frame 5100A luminosity at the time
of our monitoring campaign with an uncertainty of 10% (L_AGN = 6.94 +/- 0.71*
10^43 ergs^-1). Compared with recent spectroscopic reverberation results, 3C120
shifts in the R_BLR - L_AGN diagram remarkably close to the theoretically
expected relation of R-L^0.5. Our results demonstrate the performance of
photometric AGN reverberation mapping, in particular for efficiently
determining the BLR size and the AGN luminosityComment: 11 pages, 11 figures, Published in Astronomy and Astrophysic
Quantum Antiferromagnetism in Quasicrystals
The antiferromagnetic Heisenberg model is studied on a two-dimensional
bipartite quasiperiodic lattice. The distribution of local staggered magnetic
moments is determined on finite square approximants with up to 1393 sites,
using the Stochastic Series Expansion Quantum Monte Carlo method. A non-trivial
inhomogeneous ground state is found. For a given local coordination number, the
values of the magnetic moments are spread out, reflecting the fact that no two
sites in a quasicrystal are identical. A hierarchical structure in the values
of the moments is observed which arises from the self-similarity of the
quasiperiodic lattice. Furthermore, the computed spin structure factor shows
antiferromagnetic modulations that can be measured in neutron scattering and
nuclear magnetic resonance experiments.
This generic model is a first step towards understanding magnetic
quasicrystals such as the recently discovered Zn-Mg-Ho icosahedral structure.Comment: RevTex, 4 pages with 5 figure
Modelling photometric reverberation data -- a disk-like broad-line region and a potentially larger black hole mass for 3C120
We consider photometric reverberation mapping, where the nuclear continuum
variations are monitored via a broad-band filter and the echo of emission line
clouds of the broad line region (BLR) is measured with a suitable narrow-band
(NB) filter. We investigate how an incomplete emission-line coverage by the NB
filter influences the BLR size determination. This includes two basic cases: 1)
a symmetric cut of the blue and red part of the line wings, and 2) the filter
positioned asymmetrically to the line centre so that essentially a complete
half of the emission line is contained in the NB filter. Under the assumption
that the BLR size is dominated by circular Keplerian orbits, we find that
symmetric cutting of line wings may lead to overestimating the BLR size by less
than 5%. The case of asymmetric half-line coverage, similar as for our data of
the Seyfert 1 galaxy 3C120, yields the BLR size with a bias of less than 1%.
Our results suggest that any BLR size bias due to narrow-band line cut in
photometric reverberation mapping is small and in most cases negligible. We
used well sampled photometric reverberation mapping light curves with sharp
variation features in both the continuum and the Hbeta light curves to
determine the geometry type of the Hbeta BLR for 3C120. Modelling of the light
curve, under the assumption that the BLR is essentially virialised, argues
against a spherical geometry and favours a nearly face-on disk-like geometry
with inclination i = 10 +/- 4 deg and extension from 22 to 28 light days. The
low inclination may lead to a larger black hole mass than the derived when
using the average geometry scaling factor f=5.5. We discuss deviations of
Seyfert 1 galaxies from the M_BH - sigma relation.Comment: 9 pages, 11 figures, accepted for publication in Astronomy and
Astrophysic
Dust reverberation-mapping of the Seyfert 1 galaxy WPVS48
Using robotic telescopes of the Universitatssternwarte Bochum near Cerro
Armazones in Chile, we monitored the z=0.0377 Seyfert 1 galaxy WPVS48 (2MASX
J09594263-3112581) in the optical (B and R) and near-infrared (NIR, J and Ks)
with a cadence of two days. The light curves show unprecedented variability
details. The NIR variation features of WPVS48 are consistent with the
corresponding optical variations, but the features appear sharper in the NIR
than in the optical, suggesting that the optical photons undergo multiple
scatterings. The J and Ks emission, tracing the hot (1600 K) dust echo, lags
the B and R variations by on average 64 +/- 4 days and 71 +/- 5 days,
respectively (restframe). WPVS48 lies on the known tau-M_V relationship.
However, the observed lag is about three times shorter than expected from the
dust sublimation radius r_sub inferred from the optical-UV luminosity, and
explanations for this common discrepancy are searched for. The sharp NIR echos
argue for a face-on torus geometry and allow us to put forward two potential
scenarios: 1) as previously proposed, in the equatorial plane of the accretion
disk the inner region of the torus is flattened and may come closer to the
accretion disk. 2) The dust torus with inner radius r_sub is geometrically and
optically thick, so that the observer only sees the facing rim of the torus
wall, which lies closer to the observer than the torus equatorial plane and
therefore leads to an observed foreshortened lag. Both scenarios are able to
explain the factor three discrepancy between tau and r_sub. Longer-wavelength
dust reverberation data might enable one to distinguish between the scenarios.Comment: 4 pages, 6 figures, Published in Astronomy and Astrophysic
Generalized Hamiltonian structures for Ermakov systems
We construct Poisson structures for Ermakov systems, using the Ermakov
invariant as the Hamiltonian. Two classes of Poisson structures are obtained,
one of them degenerate, in which case we derive the Casimir functions. In some
situations, the existence of Casimir functions can give rise to superintegrable
Ermakov systems. Finally, we characterize the cases where linearization of the
equations of motion is possible
- …